1988-02-01

Thermal Shock Resistance of Oval Monolithic Heavy Duty Truck Converters 880101

The long term durability of a heavy duty gasoline truck converter is addressed by examining thermal stresses due to radial temperature gradients under three different driving schedules. The pertinent physical properties of a catalyzed cordierite ceramic converter, with triangular cell structure, are first measured as function of temperature. These are followed by thermal mapping of mid-bed temperatures with the aid of thermocouples under various driving cycles on the truck dynamometer. Both the physical properties and the temperature distribution are then used as input parameters in the finite element thermal stress model to compute stresses in the oval converter. A comparison of thermal stresses with the high temperature strength of the mounted converter shows that the brittle fracture of a honeycomb ceramic monolith can be minimized by reducing the temperature gradient and increasing the mounting pressure via the use of a thick, high density, intumescent mat between the monolith and can.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Engine Test Data Quality Requirements for Model Based Calibration: A Testing and Development Efficiency Opportunity

2013-01-0351

View Details

TECHNICAL PAPER

The Influence of Injection Parameters on Diesel Spray Characteristics

1999-01-0200

View Details

TECHNICAL PAPER

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

972837

View Details

X