Heat Transfer Experiments in an Insulated Diesel 880186

A set of heat flux data was obtained in a Cummins single cylinder NH-engine coated with zirconia plasma spray. Data were acquired at two locations on the head, at several speeds and several load levels, using a thin film Pt-Pt/Rh thermocouple plated onto the zirconia coating. Careful attention was given to the probe design and to data reduction to assure high accuracy of the measurements. The data showed that the peak heat flux was consistently reduced by insulation and by the increasing wall temperature. The mean heat flux was also reduced. The results agree well with a previously developed flow-based heat transfer model. This indicates that the nature of the heat transfer process was unchanged by the increased wall temperature. Based on these results, the conclusion is drawn that insulation and increasing wall temperatures lead to a decrease in heat transfer and thus contribute positively to thermal efficiency.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.