Dynamic Power Conversion Cycle Component Demonstrations 881108

The use of thermodynamic power cycles in space results in much higher conversion efficiencies than the traditional solar cell or thermoelectric couple. This has many beneficial consequences in both solar and nuclear applications. The 20% to 30% cycle efficiency reduces the solar energy collection area significantly, thereby reducing size, weight and drag for low earth orbit missions such as the Space Station. For nuclear fueled systems, the 4 to 5 fold increase in conversion efficiency over thermoelectrics reduces the amount of fuel needed, thereby reducing weight, size, cost and hazard.
Two competing dynamic cycles, the Organic Rankine Cycle (ORC) and the Closed Bray ton Cycle (CBC), are being developed by NASA LeRC for solar dynamic systems on the Space Station and by DOE for the U.S. Air Force. For each application (solar or nuclear), the basic cycles are similar. The major variable is power level. The solar dynamic systems being considered are in the 20 to 40 KWe range. Nuclear reactors can be used as the energy source from 10 KWe on up. Radioisotopes are best suited for the 1 to 10 KWe range.
As part of the development process for the 1 to 10 KWe sized systems, Grumman has conducted technology demonstrations of critical components of both competing cycles under funding from the U.S. Air Force Space Division.
This paper describes the respective critical components, their function, operation, verification test philosophy, test hardware and test results.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Green Racing; Solar and FSAE


View Details


Minimum Ventilation Velocities for Maintaining Space Station Crew Comfort


View Details


Improvements of a Thermal Method for the Determination of Solar Absorptance and Thermal Emittance of Spacecraft Coatings


View Details