Piston Motion and Ignition Delay: Details on Coal-Based Fuel Injection and Effects of Mass Leakage 900388

In a recent study the present authors showed that piston motion in a compression ignition engine can have a small yet significant effect on ignition delay of diesel fuel. In particular, sinusoidal piston motion, or a motion with high dwell near top-dead-center, promotes reduced delay and improved cold starting relative to conventional slider-crank piston motion. This paper extends the analysis to the case of coal-diesel and coal-methanol blends, using experimental data from the thesis available in the literature. Ignition delay was shown again to be reduced with sinusoidal motion. In addition, the effect of piston motion on mass loss was considered. As expected, higher dwell near top-dead-center caused more mass loss, but there is still benefit to ignition delay of unusual piston motions unless the coefficient of leakage past the rings is very large.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.