Numerical Study for Free-Stream Turbulence Effects on a Single Droplet Vaporization 901607

This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow.
In this numerical study, the low-Reynolds-number version of k- ε turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop.
The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000° K and the volatility.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.