The Chemical Origin of Fuel Octane Sensitivity 902137

Autoignition chemistries of several paraffins, olefins, and aromatics were examined in a motored engine at different engine conditions. Paraffin chemistry was dominated by “negative-temperature coefficient” (NTC) behavior which became more pronounced at lower pressures, higher temperatures, and shorter reaction times. In contrast, olefin and aromatic chemistries did not exhibit NTC behavior.
Measured pressures and calculated temperatures at fired octane rating conditions showed slightly lower pressures, higher temperatures, and lower reaction times at Motor octane rating conditions when compared to Research conditions. Therefore, paraffins would have a more pronounced NTC behavior under Motor rating conditions than under Research conditions. Since a more pronounced NTC behavior requires a higher compression ratio to produce autoignition and higher compression ratios equate to higher octane qualities, paraffins (generally low sensitivity fuels) have enhanced octane qualities under Motor conditions. Olefins and aromatics do not exhibit NTC behavior, and therefore, do not enjoy enhanced Motor octane qualities which accounts for their high octane sensitivities.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.