1991-02-01

Autoignition of Methane and Natural Gas in a Simulated Diesel Environment 910227

This work presents the autoignition delay time characteristics of methane and natural gas under simulated diesel engine conditions. A constant-volume combustion vessel is used for the experiments. Results are presented for the pressure and temperature ranges of 5 to 55 atm and 600 to 1700 K, respectively. Comparisons are then made with autoignition data for methanol, ethanol, isooctane, and n-cetane. Three major trends are observed. First, there is little effect on the autoignition delay time of natural gas as the vessel pressure is increased from 5 to 55 atm. Second, there is a slight decrease in the autoignition delay time of methane-ethane gas mixtures as the concentration of ethane is increased. Third, the autoignition delay time of natural gas is strongly dependent on temperature and continually decreases with increasing temperature. From a pragmatic point of view, it is shown that the use of methane or natural gas as a compression-ignited diesel fuel is impractical in a conventional diesel engine due to the high temperature of between 1200 to 1300 K needed to reduce the autoignition delay time to practical values (∼ 2 ms).

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: Purchase more aerospace standards and aerospace material specifications and save! AeroPaks off a customized subscription plan that lets you pay for just the documents that you need, when you need them.
X