Application of Linear Stability Theory in Laminar Flow Design 912116

The linear stability of fully three-dimensional supersonic boundary layers formed over swept-wing configurations is investigated using a modified version of the linear stability code COSAL. Configurations studied include a highly swept leading-edge model to be utilized for transition studies in the LARC Low-disturbance Mach 3.5 Pilot Tunnel. The model is a representation of the leading edge of a laminar flow control wing for the F-16XL aircraft. In addition, the region over a laminar flow control glove fitted on the mid-portion of an F-16XL wing was studied. For each configuration, estimates of the location of the onset of transition were computed using linear stability theory and the eN method. The effectiveness of suction in stabilizing the boundary layer over the F-16XL wing glove was also investigated.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.