Modeling Diesel Engine Spray Vaporization and Combustion 920579

Diesel engine in-cylinder combustion processes have been studied using computational models with particular attention to spray development, vaporization, fuel/air mixture formation and combustion. A thermodynamic zero-dimensional cycle analysis program was used to determine initial conditions for the multidimensional calculations. A modified version of the time-dependent, three-dimensional computational fluid dynamics code KIVA-II was used for the computations, with a detailed treatment for the spray calculations and a simplified model for combustion. The calculations were used to obtain an understanding of the potential predictive capabilities of the models. It was found that there is a strong sensitivity of the results to numerical grid resolution. With proper grid resolution, the calculations were found to reproduce experimental data for non- vaporizing and vaporizing sprays. However, for vaporizing sprays with combustion, extremely fine grids are needed. Computations made with the coarse grid sizes that are typically used underpredict measured gas phase (vapor) penetration results substantially. This underprediction of spray penetration reduces the accuracy of combustion predictions greatly. A study was made of factors that cause the observed sensitivity of the results to the computational grid size. The spray drop size and the fuel vaporization rate were found to be key parameters. Models for the processes that influence these parameters such as atomization, vapor diffusion and condensation processes are discussed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Simulation of Combustion in a DI-Diesel Engine with Application of a Moving Grid


View Details


An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities


View Details


Fuel Spray Trajectory and Dispersion in a D.I. Diesel Combustion Chamber


View Details