Large Eddy Simulation of Premixed-Flame in Engine based on the Multi-Level Formulation and the Renormalization Group Theory 920590

Large Eddy Simulation of the turbulent premixed-flame in engine is performed in a wide range of the operating conditions such as engine speed, air-fuel ratio, and ignition timing. Firstly, a mathematical formulation suitable for Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of the compressible turbulence and combusting flows is derived, which is the Multi-Level formulation. And a numerical algorithm based on the formulation is developed in order to calculate precisely the supergrid fluctuations of the physical quantities. As the determinations of the subgrid-turbulence and flame wrinkling, the Yakhot-Orszag turbulence model based on the Renormalization Group theory(RNG theory) and a flame-sheet model are combined with the numerical code. Computations are performed for a real engine with dual intakeport and valves. Obtained computational data agrees well with the experimental data on turbulence-intensity and pressure history.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.