1992-06-01

Shape Optimization of Solid Structures Using the Growth-Strain Method (Application to Chassis Components) 921063

This paper describes the shape optimization analysis of solid structures such as chassis components of a car, where the shape optimization problems of linearly elastic structures are treated to improve strength or to reduce weight of solid structures. The optimization method used here is the growth-strain method, and the shape optimization system is developed based on this method. The growth-strain method, which modifies a shape by generating bulk strain, was previously proposed for analysis of the uniform-strength shape. The generation law of the bulk strain is given as a function of a distributed parameter to be uniformed, such as von Mises stress. Two improved generation laws are presented. The first law makes the distributed parameter uniform while controlling the structural volume to a target value. The second law makes the distributed parameter uniform while controlling the maximum value of the distributed parameter to a target value. A simple example using a cantilever beam and examples applied to suspension arms are presented. The results show sufficient validity and practicality of this method and system in strength improvement and weight reduction of solid structures.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X