1992-07-01

Biomass Productivity and Sustainability of a Bioregenerative Life-Support System 921359

Energy budgets for future Controlled Ecological Life-Support Systems (CELSS) must balance not only with respect to primary productivity (i.e., photosynthesis) vs. utilization steps (human maintenance plus preparative and recycling processes), but also with respect to necessary and desired nonlife-support activities of crews (e.g., exploration, research). Present objectives of the NSCORT program at Purdue University include identification of critical paths for biomass conversion to desired forms with energetics and rate-constant properties that are compatible with life-support sustainability within a CELSS. Physico-chemical recycling systems working in conjunction with bioregenerative ones likely will be required to keep time constants of critical processes within reasonable limits.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: Purchase more aerospace standards and aerospace material specifications and save! AeroPaks off a customized subscription plan that lets you pay for just the documents that you need, when you need them.
X