1992-10-01

Investigation of Spray Penetration and Fuel Distribution Inside the Piston Bowl of a 1.9 l DI Diesel Engine Using Two-Dimensional Mie Scattering 922204

Using the two-dimensional Mie scattering technique measurements have been performed inside the piston bowl of a four cylinder VOLKSWAGEN 1.9 l DI Diesel engine. The engine was prepared for providing optical access. A new evaluation procedure was developed which allows additional information on the spray penetration in direction of the piston axis. Quantitative results have been obtained on the jet tip penetration and the spray cone angles of the jets. From liquid fuel distributions inside a laser sheet 5 mm below the nozzle an appearence frequency distribution (AFD) has been calculated, which gives a quantitative statistical information on the liquid fuel distribution inside the light sheet plane with high local and temporal resolution. By means of the AFD the jet penetration in direction of the jet axes can be reconstructed in good approximation. The information provided by the AFD is also very suitable for the validation of results obtained by computer codes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Fuel Distribution and Mixture Formation Inside a Direct Injection SI Engine Investigated by 2D Mie and LIEF Techniques

1999-01-3659

View Details

TECHNICAL PAPER

Visualization of the Qualitative Fuel Distribution and Mixture Formation Inside a Transparent GDI Engine with 2D Mie and LIEF Techniques and Comparison to Quantitative Measurements of the Air/Fuel Ratio with 1D Raman Spectroscopy

2000-01-1793

View Details

TECHNICAL PAPER

Observation of High Pressure Fuel Spray with Laser Light Sheet Method

920459

View Details

X