Determinants of Multiple Measures of Acceleration 931805

Statistical analyses of the acceleration capability of gasoline vehicles have focused on zero to 97 km/h acceleration rates and have concluded that peak power per kilogram is an appropriate single surrogate for acceleration capability. In this paper, statistical methods are used with data for 107 vehicles tested and reported by Consumers Union for 1986-1988 model years to estimate the determinants of contemporary gasoline vehicle acceleration capability under various conditions, adding new variables to the statistical tests reported by others. Like previous studies, this analysis determined that power and weight provide the most information about acceleration capability. Using a model formulation unlike other studies, this study found that engine displacement also provides statistically significant improvements in explanation of 0-48, 0-97, and 48-97 km/h acceleration times. The coefficients of the equations imply that the use of smaller displacement engines, holding peak power constant, diminishes start-up and 0-97 km/h acceleration capability. A separate equation is estimated to illustrate the effects of advanced engine technologies on displacement, controlling for power. This equation is used in conjunction with the acceleration equations to illustrate a method of estimating performance-equivalent engine substitutions when engine technologies change. Transmission type was important for start-up acceleration, with automatic-transmission-equipped vehicles being significantly slower than stick-shift-equipped vehicles. Fuel injection was found to significantly improve start-up acceleration. Variables proxying aerodynamic-drag effects tended to be significant determinants of acceleration in the higher-speed equations, but not for start-up acceleration. Estimated aerodynamic drag effects indicated that drag slows down 0-97, 48-97, and 72-105 km/h acceleration of pickup trucks and sport utility vehicles more than passenger cars and vans. The goodness-of-fit (R2) of the 0-48 km/h acceleration equations was far poorer than for the others.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.