Development of a Photoconductive Gamma Dosimeter for Space Application 941204

Demand for accurate and reliable gamma dosimetry in a radiation environment and the unsatisfactory performance of the existing devices has given rise to the need for a better gamma measurement system, capable of operating in a high dose rate environment and withstanding a high total dose. The concept of a new gamma dose measurement device based on the principle of photoconductivity has the potential of filling this void. Preliminary experiments and analyses indicated that the selected dosimeter materials exhibit photoconductivity in a useful range, responsive to changes in gamma dose rate. The initial Pyrex glass dosimeter appeared to suffer radiation damage at the relatively high dose rates employed (up to 0.116 Mega rads/hour). Quartz is now being studied as an alternative material.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.