1994-10-01

The Influence of High-Octane Fuel Blends on the Performance of a Two-Stroke SI Engine with Knock-Limited-Compression Ratio 941863

The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a co-solvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends. Knock-limited maximum brake output also increases due to extension of the knock limit. The knock limit is extended by methanol-eucalyptus-ethanol-orange oil blends, in descending order.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Unleaded Gasoline-Azeotropic Ethanol Blends as Fuels for Spark Ignition Engines

932771

View Details

TECHNICAL PAPER

The Effect of Ethanol Fuel on a Spark Ignition Engine

2006-01-3380

View Details

TECHNICAL PAPER

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

932953

View Details

X