Experimental and Analytical Evaluation of Contoured Thrust Bearings 950948

Incessant demands to improve performance in automotive engines have popularized the use of contoured sector thrust bearings. This type of bearing has the mechanical ability generate a complete oil film that in turn can support high axial crankshaft loads and can reduce frictional drag torque. As a means of evaluating thrust bearing performance prior to production, we have designed and constructed an experimental apparatus. This experimental apparatus measures load, speed, torque, film temperature, and cross-film asperity contact resistance over a wide range of operating conditions representative in a real engine/ transmission combination. Concurrently, we have developed an analytical means of predicting oil film thickness, torque, and load using a finite element formulation of the Reynolds equation coupled with a mass-conserving cavitation algorithm. This allows for routine handling of arbitrary bearing profiles throughout the thrust pad area as well as ease in specification of arbitrary pressure and density boundary conditions along the thrust pad boundary. Results are presented for a sample ramp-flat thrust bearing at three fixed rotational speeds. Predicted frictional torque values are found to compare very well with experimentally-measured results, and computed film thickness correlates well with measured asperity resistance. In addition, a minimum film thickness value at which seizure occurs is also determined.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

On the Influence of the Surface Geometry of Thrust Main Bearings for Internal Combustion Engines


View Details


Optimization of the Lubrication Distribution in Multi Plate Wet-Clutches for HVT Transmissions: An Experimental - Numerical Approach


View Details


New Technologies for Engine Valve Springs


View Details