1995-10-01

Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions 952420

Oxygen-enriched combustion is a proven, seriously considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engine-out and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the U.S. Environmental Protection Agency's (EPA's) “Off-Cycle” test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NOx) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NOx emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (MIR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NOx emissions were much higher than those with the ambient air.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Oxygen-Enriched Diesel Engine Experiments with a Low-Grade Fuel

932805

View Details

TECHNICAL PAPER

The Potential Benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle

932803

View Details

TECHNICAL PAPER

Reducing Lawnmower Exhaust Emissions in the U.S. Postal Service

961734

View Details

X