1996-02-01

An Optimization Study on the Control of NOx and Particulate Emissions from Diesel Engines 960473

This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio, ϕ, was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions. A series of road tests showed that EGR most effectively reduces NO emissions at high ϕ's (by a factor of two at 20% EGR) which, however, is accompanied by an increase in CO emissions by a factor of two, and a penalty in fuel economy by 8%. Benefits and losses can be optimized by automatically varying the level of EGR, using feedback from the aforementioned engine parameters. An algorithm was developed to govern the electrically controlled EGR valve and tests showed that the NO levels decreased by 30%, while the CO increased by 30%, showing no penalty in fuel economy. The resulting specific NO and CO emissions were well within the current US EPA standards.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-01-3284

View Details

TECHNICAL PAPER

Passenger Car Fuel Economy Trends Through 1976

750957

View Details

TECHNICAL PAPER

Diesel Emissions as Predictors of Observed Diesel Odor

720757

View Details

X