1996-02-01

Mechanism of Soot and NOx Emission Reduction Using Multiple-injection in a Diesel Engine 960633

Engine experiments have shown that with high-pressure multiple injections (two or more injection pulses per power cycle), the soot-NOx trade-off curves of a diesel engine can be shifted closer to the origin than those with the conventional single-pulse injections, reducing both soot and NOx emissions significantly. In order to understand the mechanism of emissions reduction, multidimensional computations were carried out for a heavy-duty diesel engine with multiple injections. Different injection schemes were considered, and the predicted cylinder pressure, heat release rate and soot and NOx emissions were compared with measured data. Excellent agreements between predictions and measurements were achieved after improvements in the models were made. The improvements include using a RNG k-ε turbulence model, adopting a new wall heat transfer model and introducing the nozzle discharge coefficient to account for the contraction of fuel jet at the nozzle exit. The present computations confirm that split injection allows significant soot reduction with out a NOx penalty. Based on the computations, it is found that multiple injections have a similar NOx reduction mechanism as single injections with retarded injection timings. Regarding soot reduction, it is shown that reduced soot formation is due to the fact that the soot producing rich regions at the spray tip are not replenished when the injection is terminated and then restarted. With split injections, the subsequently injected fuel burns rapidly and does not contribute significantly to soot production. The present work also demonstrates the usefulness of multidimensional modeling of diesel combustion to reveal combustion mechanisms and to provide design insights for low emission engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes

2007-01-4063

View Details

TECHNICAL PAPER

Design Aspects of Lean NOx Catalysts for Gasoline and Diesel Engine Applications

952495

View Details

TECHNICAL PAPER

Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces

2011-01-2183

View Details

X