Combustion Analysis of Esters of Soybean Oil in a Diesel Engine 960765

The alkyl esters of plant oils and animal fats are receiving increasing attention as renewable fuels for diesel engines. These esters have come to be known as biodiesel. One objection to the use of the methyl and ethyl esters of soybean oil as a fuel in diesel engines is their high crystallization temperature. One solution to this problem is to use the isopropyl esters of soybean oil which have significantly lower crystallization temperatures. Another method to improve the cold flow properties of esters is to winterize them to sub-ambient temperature. This is accomplished by cooling the esters and filtering out the components that crystallize most readily.
Previous work has shown that when methyl, isopropyl and winterized ester blends were compared with No.2 diesel fuel, the isopropyl and winterized methyl esters had at least the same emission reduction potential as the methyl esters, with similar engine performance. This paper discusses those results using heat release analysis that shows all of the blends have shorter ignition delays, and lower premixed burn fractions than No.2 diesel fuel. All tested fuels except the isopropyl ester blends had similar combustion behavior. However, blends with isopropyl ester showed some abnormal combustion behavior, possibly due to high levels of monoglycerides.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

State-of-the-Art Report on the Use of Alcohols in Diesel Engines


View Details


Diesel Combustion Characteristics of Coconut Oil and Palm Oil Biodiesels


View Details


Ignition Delay Characteristics of Alternative Diesel Fuels: Implications on Cetane Number


View Details