1996-05-01

Premixed Combustion Modelling for Spark-Ignition Engine Applications 961190

A new modelling approach for premixed turbulent combustion has been developed and implemented in computing flow and combustion in axisymmetric engine cylinders. Turbulent transport is treated using a standard second-moment closure model based on Favre density-weighted averaging and the turbulent reaction rate is modelled using a novel laminar flamelet approach. The numerical method is based upon a modified PISO algorithm incorporating second-order bounded spatial differencing. The need for high numerical accuracy is investigated and quantified with reference to engine combustion calculations. The new model for the mean turbulent reaction rate is shown to capture correctly the qualitative behaviour of the flame near to a solid wall, in marked contrast to many existing models. The superiority of the second-moment turbulence model is demonstrated by direct comparison with a standard eddy-viscosity model using an engine combustion test case. A parametric study is carried out to examine the dependence of modelled engine performance on various parameters such as turbulence intensity, compression ratio, engine speed and ignition timing. In every case the expected behaviour is qualitatively well reproduced.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

CFD Modeling of the Initial Turbulence Prior to Combustion in a Large Bore Diesel Engine

2008-01-0977

View Details

TECHNICAL PAPER

Aspects of Laminar and Turbulent Burning Velocity Relevant to SI Engines

2000-01-0192

View Details

TECHNICAL PAPER

The Effect of In-Cylinder Flow Processes (Swirl, Squish and Turbulence Intensity) on Engine Efficiency — Model Predictions

820045

View Details

X