Hybrid and Conventional Hydrogen Engine Vehicles that Meet EZEV Emissions 970290

Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer an alternative for providing Equivalent Zero Emission Vehicle (EZEV) levels, along with a range and performance comparable to today's automobiles. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NOx emissions can be reduced to less than 10 ppm without a catalytic converter or EGR. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder and due to reduced heat transfer. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency.
In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine.
The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a series hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Fuel and Engine Effects on Rich-Combustion Products as an Enabler of In-Cylinder Reforming


View Details


Hydrogen and Hydrogen Mixtures as Fuel in Stationary Gas Engines


View Details


Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine


View Details