1997-02-24

Computations of Transient Jets: RNG k-e Model Versus Standard k-e Model 970885

The spray submodel is an important component in multidimensional models for Diesel engines. The satisfactory representation of the spray is dependent on adequate representation of turbulence in the jet which, in part, determines its spread and penetration. In this work, the RNG k-ϵ model is evaluated relative to the standard k-ϵ model for computing turbulent jets. Computations are made for both gas jets and sprays. The gas jet is computed with an adequately high degree of numerical spatial resolution of the order of the orifice diameter. In the case of the spray, achieving such a high resolution would be challenging. Since the spray has similarities to the gas jet, and the gas jet may be computed with such high resolution and adequate accuracy, firm conclusions may be drawn for it and they may be applicable to sprays. It is concluded that the RNG k - ϵ model, in general, results in predictions of greater mixing in the jets relative to the standard model.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

What is Adequate Resolution in the Numerical Computations of Transient Jets?

970051

View Details

TECHNICAL PAPER

Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations

972881

View Details

TECHNICAL PAPER

A Keynote on Future Combustion Engines

2001-01-0248

View Details

X