1997-05-01

Factors Influencing Drive Cycle Emissions and Fuel Consumption 971603

A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles. Also penalties associated with cold-start and warm-up behaviour, catalyst light-off time and engine calibration have been investigated. Illustrations are based on the performance of a 1.81 four cylinder engine in a 1300kg vehicle with manual transmission.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine

2017-01-1021

View Details

TECHNICAL PAPER

An Integrated Powertrain (IPT) Model - Stage One

2000-01-0864

View Details

TECHNICAL PAPER

Evaluation of NOx and Fuel Consumption Reduction Potential of Parallel Diesel-Hybrid Powertrains using Engine-In-the-Loop Simulation

2010-32-0128

View Details

X