1997-05-19

A Coupled Methodology for Modeling the Transient Thermal Response of SI Engines Subject to Time-Varying Operating Conditions 971859

A comprehensive methodology for predicting the transient thermal response of spark-ignition engines subject to time-varying boundary conditions is presented. The approach is based on coupling a cycle-resolved quasi-dimensional simulation of in-cylinder thermodynamic events with a resistor-capacitor (R-C) thermal network of the various component and fluid interactions throughout the engine and exhaust system. The dynamic time step of the thermal solution is limited by either the frequency of the prescribed time-dependent boundary conditions or by the minimum thermal time constant of the R-C network. To demonstrate the need for fully-coupled, transient thermodynamic and heat transfer solutions, model behavior is first explored for step-change and staircase variations of engine operating conditions. Having demonstrated model behavior in elementary transients, an FTP urban driving schedule with known fueling rates, engine speeds, and manifold vacuum for a four-cylinder engine is simulated. Comparisons of model predictions with experimentally measured temperatures, performance, and NO and CO emissions demonstrate the excellent potential of the methodology to accurately capture the impact of capacitive thermal coupling between the working, cooling and lubricating fluids, and the associated structural elements.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling of Quasi-Steady State Heat Transfer Phenomena with the Consideration of Backflow Gas Effect at Intake Manifold of IC Engines and Its Numerical Analyses on 1-D Engine Simulation

2018-32-0029

View Details

TECHNICAL PAPER

Exhaust Phases in a DI Diesel Engine Based on Instantaneous Cyclic Heat Transfer Experimental Data

2013-01-1646

View Details

JOURNAL ARTICLE

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-01-1326

View Details

X