1998-02-23

A Numerical Simulation of the Thermal Process in Controlled Atmosphere Brazing (CAB) of an Aluminum Heat Exchanger 980053

This paper describes a heat transfer model currently being developed for a next generation controlled atmosphere brazing furnace for production of automotive aluminum heat exchangers. This furnace will be numerically controlled to improve product yield. Part of the control loop decision will be based on predicted heat exchanger temperatures for set operating conditions. The numerical program is a transient heat transfer model simulating the radiant heat transfer between the furnace and the heat exchanger and the conduction heat transfer within the heat exchanger.
The program solves the three-dimensional conduction equation for a solid using an implicit finite difference method. The boundary conditions to the solid is the radiant heat exchange. The program determines the radiant heat exchange based on the assumption of gray diffuse surfaces. Using an existing viewfactor program that uses contour integration, viewfactors are used to determine modified configuration factors to ultimately determine the boundary heat fluxes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Application of Non-Corrosive Flux Brazing Aluminum Radiator to Agricultural Machinery

911298

View Details

TECHNICAL PAPER

New Joining Methods for Composite Brake Disks

2010-01-1704

View Details

TECHNICAL PAPER

Determination of Geometrical Parameters of the Dead Metal Zone and Exit Curvature Profile in the Extrusion Process of Non-Symmetrical Flat Dies

2012-01-0052

View Details

X