1998-02-23

Individual-Cycle Measurements of Exhaust-Hydrocarbon Mass from a Direct-Injection Two-Stroke Engine 980758

Unburned hydrocarbon (HC) emissions and processes leading thereto are quantified in a single-cylinder version of an experimental V6 direct-injection (DI) two-stroke engine. Fast-response HC sampling at the exhaust port of the engine is integrated with simultaneous acquisition of individual-cycle cylinder-pressure data and with high-speed imaging of the fuel spray and spectrally resolved combustion luminosity. For every engine cycle, both the total HC mass and the fractions thereof that leave the cylinder during the cylinder-blowdown, main-scavenging, and port-closing phases are determined using a pressure-based calculation of the individual-cycle exhaust mass flow rate. At light load, HCs exhausted during the main-scavenging phase (when the transfer ports are open) account for 60-70% of the total HC mass and are strongly correlated with the amount of unburned fuel in each cycle. In this DI two-stroke engine, incomplete combustion of the stratified charge (due primarily to overmixing of fuel during and after injection, slow mixing-limited combustion of rich zones, misfires, and fuel trapped in fuel-injector crevices) appears to be a much more important HC source than the piston top-ring-land crevice, which is the dominant HC-emission source in premixed-charge four-stroke engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimization of the E-TEC™ Combustion System for Direct-Injected Two-Stroke Engines Toward 3-Star Emissions

2003-32-0007

View Details

TECHNICAL PAPER

A New Two-Stroke Engine with Compressed-Air Assisted Fuel Injection for High Efficiency low Emissions Applications

880176

View Details

TECHNICAL PAPER

Further Investigation of Fuel Injection in an Engine Having Spark Ignition

320026

View Details

X