Simulation of Liquid Jet Atomization for Fuel Sprays by Means of a Cascade Drop Breakup Model 980808

A jet and droplet breakup model for high pressure-driven liquid fuel is described and validated for vaporizing sprays, and its performance is evaluated in combination with a recently developed auto-ignition model for reacting sprays under application of a KIVA-3 based code.
The breakup model, presented in a previous study for non-evaporating sprays, imitates a cascade of drop breakups whereby the actual disintegration processes reflect the experimentally observed stripping or bag breakup mechanisms. The breakup condition itself is determined by the Taylor drop oscillator dynamics and the droplet injection is governed by a drop size distribution to account for the surface stripping near the nozzle exit. The formation of a fragmented liquid core is the consequence of a drop breakup delay achieved with an appropriate initial drop deformation together with the drop breakup cascade.
The model has been validated for vaporizing, non-reacting sprays with experimental data. The computations are in good agreement with the spray penetrations and show acceptable correspondence in the fuel-gas mixture formation. Applications of the model to reacting sprays have shown good agreement in ignition time and location with experimental data, where the auto-ignition has been modeled by a new approach using a single transport equation in combination with a reduced kinetic scheme.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Improved Lagrangian CMC for Simulation of Combustion Under Diesel-like Condition


View Details


Large Eddy Simulation of Stratified Combustion in Spray-guided Direct Injection Spark-ignition Engine


View Details


Impingement Spray System with Direct Water Injection for Premixed Lean Diesel Combustion Control


View Details