1998-10-19

Homogeneous Charge Compression Ignition with a Free Piston: A New Approach to Ideal Otto Cycle Performance 982484

Sandia National Laboratories has been investigating a new, integrated approach to generating electricity with ultra low emissions and very high efficiency for low power (30 kW) applications such as hybrid vehicles and portable generators.
Our approach utilizes a free piston in a double-ended cylinder. Combustion occurs alternately at each cylinder end, with intake/exhaust processes accomplished through a two stroke cycle. A linear alternator is mounted in the center section of the cylinder, serving to both generate useful electrical power and to control the compression ratio by varying the rate of electrical generation. Thus, a mechanically simple geometry results in an electronically controlled variable compression ratio configuration.
The capability of the homogeneous charge compression ignition combustion process employed in this engine with regards to reduced emissions and improved thermal efficiency has been investigated using a rapid compression expansion machine. Eight different fuels, including propane, natural gas, hydrogen, methanol, n-pentane, hexane, n-heptane, and isooctane have been used at low equivalence ratio (ϕ ∼ 0.35) and initial temperatures of 25°C, 50°C and 70°C.
The results indicate that the cycle thermal efficiency can be significantly improved (56% measured) relative to current combustion systems, while low NOx emissions are possible (<10 PPM). HC and CO emissions must be controlled through some aftertreatment technology. The primary cause of this high conversion efficiency is nearly constant volume combustion at high compression ratio (∼ 30:1).

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimizing the Scavenging System for a Two-Stroke Cycle, Free Piston Engine for High Efficiency and Low Emissions: A Computational Approach

2003-01-0001

View Details

TECHNICAL PAPER

Methanol Blended Fuel Investigations on an Injected Single Cylinder Spark Ignition Engine

2005-26-031

View Details

TECHNICAL PAPER

Effects of Bio-Alcohol Fuel Blends on the Aging of Engine Lubricating Oil

2018-01-1746

View Details

X