1998-11-02

Response and Tolerance of the Human Forearm to Impact Loading 983149

With the widespread use of supplemental restraint systems (airbags), occasional rare injuries have occurred because of the force associated with these systems upon deployment. Recent case studies have demonstrated forearm fractures associated with airbag deployment. The present study was conducted to determine the tolerance of the human forearm under a dynamic bending mode. A total of 30 human cadaver forearm specimens were tested using three-point bending protocol to failure at 3.3 m/s and 7.6 m/s velocities. Results indicated significantly (p < 0.01) greater biomechanical parameters associated with males compared to females. The bending tolerance of the human forearm, however, was found to be most highly correlated to bone mineral density, bone area, and forearm mass. Thus, any occupant with lower bone mineral density and lower forearm geometry/mass is at higher risk. The mean failure bending moment for all specimens was 94 Nm. The smaller sized occupant with lower bone mineral density, however, has one-half of this tolerance (approximately 45 Nm). The present investigation offers quantitative information regarding tolerance of the human forearm which may be useful for design of injury-mitigating devices.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Bending Strength of the Human Cadaveric Forearm Due to Lateral Loads

99SC24

View Details

TECHNICAL PAPER

The Effect of Frontal Collision Delta-V and Restraint Status on Injury Outcome

2010-01-0145

View Details

TECHNICAL PAPER

Safety Restraint System Physical Evidence and Biomechanical Injury Potential Due to Belt Entanglement

2006-01-1670

View Details

X