Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Automobile Exterior Water Flow Analysis Using CFD and Wind Tunnel Visualization

1998-02-23
980035
This paper presents an innovative automobile application of Computational Fluid Dynamics (CFD) as a complement to wind tunnel experimentation for the evaluation of rain water and wiper wash flow on the exterior of a moving vehicle. In addition to calculating the air flow around a car, a multi-phase CFD code was used to simulate rain drops in the air stream, rain drops impinging on the vehicle, and the transport of the “thin liquid film” of water on the vehicle surfaces. Time-dependent results for the location, velocity, and height of the water film on the windshield, A-pillar, and side glass were obtained. The CFD results compared favorably with a wind tunnel procedure. The variation of the calculated water film corresponded with observed patterns of water streaks on test vehicles. Design iterations performed on the computational model also agreed with similar test configurations.
Technical Paper

Design of a Dual Wall Air Gap Exhaust Manifold

1998-02-23
980045
The new regulations to reduce emissions have resulted in the development of new techniques to maintain or enhance competitive performance. A requirement for the manifold is to help meet the reduction in cold start emissions, particularly during the transient conditions from start to 100 seconds following the Federal Test Procedures for vehicle emissions. Finite element computer models were developed to predict inner and outer wall temperatures, and to determine structural soundness. Tests were performed to assure that noise levels were minimized. Dynamometer lab and field tests were performed to verify that the manifold would meet the design requirements. From the results of these tests and analyses, modifications were made to the weld and manufacturing techniques to improve product life and reduce noise. Dual wall manifolds have proven durability to meet high exhaust gas temperatures up to 1650°F (900°C), while meeting the performance, noise, and weight reduction goals.
Technical Paper

An Application for Fatigue Damage Analysis Using Power Spectral Density from Road Durability Events

1998-02-23
980689
A method is presented to process random vibration data from a complete road durability test environment as stationary segments and then develop test profiles based on fatigue content of their power spectral densities. Background is provided on existing techniques for estimating fatigue damage in the frequency domain. A general model for stress response to acceleration is offered to address the vibration test's requirement for acceleration data and the fatigue prediction method's requirement for stress data. With these tools, the engineer can extend test correlation beyond failure modes to include retention of estimated fatigue damage. Recommendations allow for test time compression from editing and improve existing exaggeration methods.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

Anisotropy Effects in the Forming of Aluminum Sheet

1995-02-01
950702
In an effort to reduce anisotropy, which affects sheet forming performance, special actions were taken in the production of 6009-T4 sheet. To further reduce anisotropy in forming behavior, the modified 6009-T4 sheet was given an electro-discharge texture (EDT) surface topography to make friction behavior nondirectional. The modified 6009-T4 was compared to standard 6009-T4 in terms of metallurgical characteristics, laboratory test results and field forming results. The modified sheet yielded reduced planar anisotropy and improved formability. EDT completely removed directionality in friction behavior and led to an improvement in performance in the forming trials.
Technical Paper

Issues and Trends in Automotive Aluminum Sheet Forming

1993-03-01
930277
Aluminum sheet forming is entering an era where rapid advances in technology are likely. Combining increased understanding of material behavior, increased understanding of metalworking tribology and improved control of sheet forming processes will result in improved distribution of strain, allowing more complex components to be formed and greater design flexibility. New process control techniques will be developed and implemented to result in improved press actions, control of strain path to effect increased formability and reduced sensitivity to process variables. Improved techniques for assessing producibility and for generating effective tool designs will be developed, perhaps eliminating the need for soft tool tryouts to substantially reduce the total die development time and cost. In this review paper, each of these issues will be discussed.
Technical Paper

Nonlinear Analysis Theory of Single Leaf Steel Springs

1988-11-01
881744
The analytical methods for single leaf steel springs should at least include two areas: (1) allowance for any curved or tapered shape, and (2) technologies to precisely predict the geometrical configuration due to large deflection. The last item is an outstanding consideration in automotive application because of the parts alignment requirement. In this paper, a practical analytical method is presented to achieve the goals mentioned above. Basically, the. flexibility method of finite element was employed in the solution technique. In the spring application, this approach can save computer time because of the elimination of matrix inversion in the internal computation. An integration form of the flexibility matrix for each element was given in this paper to allow for a tapered spring shape. This integration-formed flexibility matrix can be approximately evaluated by the Gaussian Quadrature Formula.
Technical Paper

Driver Understanding and Recognition of Automotive ISO Symbols

1988-02-01
880056
This study assesses the understanding and recognition, by U.S. drivers, of the 25 automotive ISO symbols specified in SAE Standard J1048. A two-part survey was administered to 505 volunteers at a Secretary of State's office located in a Detroit suburb. Percentage results for symbol understanding indicated low levels of understanding for many symbols; percentage results for symbol recognition were generally much higher for all symbols. The effects of gender, age, and education level on the percentage results are summarized.
Technical Paper

Rollover Crash Tests-The Influence of Roof Strength on Injury Mechanics

1985-12-01
851734
Eight lateral dolly rollover tests were conducted on 1983 Chevrolet Malibusata nominal speed of 51.5 km/h (32 mi/h). Four of the vehicles had rollcages, and four had standard production roofs. Unrestrained outboard front GM Hybrid ill dummies with head and neck transducers were used. Numerous cameras documented the vehicle and dummy movements. Detailed vehicle kinematics data allowed quantitative analysis of the conditions for head and neck loads. For both roof structures, the dummies moved upward and outward from their seats due to rotation and acceleration of the vehicle. High head/neck loads were measured when the head contacted a part of the car experiencing a large change in velocity, often that part of the car which struck the ground. The results of this work indicate that roof strength is not an important factor in the mechanics of head/neck injuries in rollover collisions for unrestrained occupants.
Technical Paper

Changing Inspection and Maintenance Requirements: … A Result of New Emission Control Technology

1979-02-01
790783
Amendments to the Clean Air Act require the implementation of inspection/maintenance (I/M) programs in areas designated as non-attainment and unable to meet the National Ambient Air Quality Standards by 1982. Current I/M programs have been developed using data representative of pre- and early-catalyst emission control technology. Changes to current emission control systems and electronic computer controlled systems represent new emission control technology. This paper addresses the I/M situation as related to these system changes. Results of tests on a prototype system are presented. Parameter inspection and the utilization of built-in diagnostics on future systems have the potential to maximize the effectiveness of I/M programs.
Technical Paper

Development and Validation of Engine Models Via Automated Dynamometer Tests

1979-02-01
790178
An automated engine dynamometer test procedure is developed and mathematical models for the main engine control variables are derived from the resulting data base. The new procedure involves sequential testing at many speed/load conditions for various combinations of air fuel ratio, spark timing and exhaust gas recirculation. The total testing time required for generating the data base of more than 2000 test points is less than twelve hours. An independent transient speed/load test is also conducted for the purpose of validating the engine models. The measured and model predicted data are compared for this test which corresponds to a segment of the EPA urban schedule.
Technical Paper

Emission and Fuel Economy Measurement Improvements

1979-02-01
790233
A program was initiated to improve the emission and fuel economy measurement accuracy and test cell to test cell correlation. Improvements were made to the Constant Volume Sampling System, electric dynamometer, instrument calibration ranges and system checks were initiated to improve the accuracy of the bag emissions, modal emissions, calculated and measured fuel economy. Unique emission and fuel economy problems associated with gasoline and diesel testing were studied and resolutions effected when possible.
Technical Paper

General Motors Phase II Catalyst System

1978-02-01
780205
Three-way catalysts provide a means of catalytically achieving lower NOx emission levels while maintaining good control of HC and CO emissions. However, very accurate control of air-fuel ratio is necessary. The precise air-fuel ratio control required is accomplished by employing a closed loop fuel metering system in conjunction with an exhaust gas sensor and an electronic control unit. To gain production experience with this type of system, General Motors is introducing it on two 1978 engine families sold in California. One is a 2.5 litre L-4 engine and the other is a 3.8 litre V-6 engine. Closed loop controlled carburetors are used on both systems. This paper discusses these 1978 systems. The components used on both systems are described and emission and fuel economy results are reviewed.
Technical Paper

Dual Catalytic Converters

1975-02-01
750176
The stringent 1978 emission standards of 0.41 gm/mi HC, 3.4 gm/mile CO, and 0.4 gm/mi NOx may require the use of a dual catalytic converter system (reducing and oxidizing catalyst). These emission requirements have been achieved at low mileage with such a system, but it is complex and has exhibited poor durability. This system also results in the loss of fuel economy at the 1978 emission levels.
Technical Paper

DEVELOPMENT OF THE BRAKE SYSTEM FOR THE GENERAL MOTORS EXPERIMENTAL SAFETY VEHICLE

1973-02-01
730081
The Experimental Safety Vehicle program in General Motors was a study in meeting the Department of Transportation performance requirements, with the sole objective being to meet or exceed all of the contract specifications. This vehicle was not intended for production; it was a safety idea car with many unique features including a four-wheel, anti-lock disc brake system using a hydraulic power brake system with an electro-hydraulic back-up system. In addition, the design of the dual piston caliper for the disc brakes provides a redundant system thereby minimizing the effect of a single line or hose failure. This feature coupled with the redundant back-up power brake system provided performance under various failed conditions approximately equal to the original effectiveness with only a slight increase in pedal effort. This brake system, developed for the ESV, satisfied the General Motors performance objectives, and equaled or surpassed the contract requirements of the ESV program.
Technical Paper

GENERAL MOTORS EXPERIMENTAL SAFETY VEHICLE-POWERTRAIN & FUEL SYSTEM

1973-02-01
730280
The Experimental Safety Vehicle powertrain and fuel system developed by General Motors in compliance with Contract DOT-OS-00095 with the U.S. Department of Transportation include several special features: a low engine accessory package to meet the front visibility down angle of 8 degrees, engine and transmission mounting for retention at high decelerations, a light aluminum engine, an over-the-rear-axle fuel tank, and a unique evaporative emission fuel pipe routing. A comprehensive test program was planned and final testing to validate contract specifications was conducted.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
X