Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

ISO 26262 C Class Evaluation Method for Motorcycles by Expert Riders Incorporating Technical Knowledge Obtained from Actual Riding Tests

2017-11-05
2017-32-0057
In applying the ISO 26262 controllability classification for motorcycles in actual riding tests, a subjective evaluation by expert riders is considered to be the appropriate approach from the viewpoint of safety. We studied the construction of an expert-rider-based C class evaluation method for motorcycles and developed some evaluation test cases reproducing various hazardous events. We determined that it was necessary to accumulate more evaluation cases for further representative scenarios and that, to avoid variations in such evaluations, a method in which different expert riders can carry out testing following a common understanding had to be devised. Considering these problems for practical application, this study aimed at establishing an actual riding test method for C class evaluation by expert riders and to develop a deeper understanding of test procedures and management.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Technical Paper

The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

2017-10-08
2017-01-2364
Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions for RDE and WLTC Using SI Passenger Cars

2017-10-08
2017-01-2391
The drive characteristics and gaseous emissions of legislated Real Driving Emissions (RDE) test data from 8 different spark ignition vehicles were compared to data from corresponding Worldwide harmonized Light vehicles Test Cycle (WLTC) tests. The effect of the official RDE exclusion of cold start and idling on the RDE test, and the effect of the use of the moving averaging window (MAW) analysis technique, were simultaneously investigated. Specific attention was paid to differences in drive characteristics of the three different driving modes and the effect this had on the distance-based CO2, CO and NOx emission factors for each. The average velocity of the RDE tests was marginally greater than the WLTC tests, while the average acceleration was smaller. The CO2 emission appeared on average 4% lower under the RDE tests compared to the WLTC tests, while the CO was 60% lower. The NOx values were 34% lower under the RDE testing, and appeared to be linked to the average acceleration.
Technical Paper

Experimental and Numerical Study on the Fuel Pressure Fluctuations Aroused by the Injector for the Electronic Unit Pump System

2017-10-08
2017-01-2217
The electronic unit pump system, which is widely applied to the heavy-duty diesel engine, belongs to the pulsating high-pressure fuel injection system, and the fuel pressure fluctuations have an essential influence on the spray and combustion in the internal combustion engine. Besides, pressure fluctuations are always aroused by the motion of actuators, such as the injector or other control valves, so it is also an advantage for fault diagnosis and feedback control to ascertain the relationship between the pressure fluctuation and the motion of the actuator. In this study, experiments and 1D-simulation were carried on to investigate the fuel pressure fluctuation characteristics and their correlations with the transient motion of the needle valve in the injector.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

Fluid-Solid Coupled Heat Transfer Investigation of Wet Clutches

2017-10-08
2017-01-2442
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

On-Line Model Recursive Identification for Variable Parameters of Driveline Vibration

2017-10-08
2017-01-2428
The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
Technical Paper

Fault Detection and Diagnosis of Diesel Engine Lubrication System Performance Degradation Faults based on PSO-SVM

2017-10-08
2017-01-2430
Considering the randomness and instability of the oil pressure in the lubrication system, a new approach for fault detection and diagnosis of diesel engine lubrication system based on support vector machine optimized by particle swarm optimization (PSO-SVM) model and centroid location algorithm has been proposed. Firstly, PSO algorithm is chosen to determine the optimum parameters of SVM, to avoid the blindness of choosing parameters. It can improve the prediction accuracy of the model. The results show that the classify accuracy of PSO-SVM is improved compared with SVM in which parameters are set according to experience. Then, the support vector machine classification interface is fitted to a curve, and the boundary conditions of fault diagnosis are obtained. Finally, diagnose algorithm is achieved through analyzing the centroid movement of features. According to Performance degradation data, degenerate trajectory model is established based on centroid location.
Technical Paper

Study on Nonlinear Rotordynamics Characteristics for Electric Compound Turbocharger

2017-10-08
2017-01-2418
The electric compound turbocharger(ECT) which integrates a high speed motor into a turbocharger rotor shaft can be used transiently to accelerate the turbocharger more quickly in response to an acceleration requirement. It can utilize the exhaust gas energy fully to improve the engine fuel efficiency and benefit for engine with lower emissions. The key technique of ECT is to solve the reliability problems when an electrical motor is integrated into a turbocharger shaft between the turbine and compressor wheels will increase the burden for the bearing support and affect the turbocharger shaft rotation characteristics. In order to know the dynamics behavior of higher load bearing system is explored for reliability, this paper focus on the nonlinear rotor dynamics characteristics of ECT rotor bearing system.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

Effects of Nozzle Hole Diameter on Diesel Sprays in Constant Injection Mass Condition

2017-10-08
2017-01-2300
As known, the constant injection mass is a criterion for measuring the thermal efficiency of diesel engines. In this study, the effects of nozzle hole diameter on diesel free-spray characteristics were investigated in constant injection mass condition. The experiment was performed in a constant volume combustion chamber equipped with a high pressure common-rail injector that can change nozzles. Three single-hole axis nozzles with different hole diameters were used. High speed camera and Schlieren visualization set-up were used to capture the spray behaviors of liquid phase and vapor phase respectively. For liquid phase spray, the higher nozzle hole diameter, the higher were the liquid phase spray penetration rate and the saturated liquid phase spray penetration length. The saturated liquid phase spray penetration length wound not grow but oscillate around different mean values at the steady stage.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

The Effects of Ethanol-Butanol Ratio on the Droplet Behavior During Impact onto a Heated Surface

2017-10-08
2017-01-2289
Droplets impacting onto the heated surface is a typical phenomenon either in CI engines or in GDI SI engines, which is regarded significant for their air-fuel mixing. Meanwhile, alcohols including ethanol and butanol, has been widely studied as internal combustion engine alternative fuels due to their excellent properties. In this paper, under different component ratio conditions, the ethanol-butanol droplet impacting onto the heated aluminum surface has been studied experimentally. The falling height of the droplets were set at 5cm. A high-speed camera, set at 512×512pixels, 5000 fps and 20 μs of exposure time, was used to visualize the droplet behavior impinging onto the hot aluminum surface. The impact regimes of the binary droplet were identified. The result showed that the Leidenfrost temperature of droplets was affected by the ratio of ethanol to butanol. The higher the content of butanol in the droplet, the higher the Leidenfrost temperature.
X