Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
X