Refine Your Search




Search Results

Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Ford 6.8L Hydrogen IC Engine for the E-450 Shuttle Van

Ford Motor Company is researching and developing multiple propulsion strategies which include advanced gasoline engines, clean diesel, flexible fuel (ethanol blends up to E-85), hybrids and hydrogen propulsion, both in internal combustion (IC) engines and fuel cells. Hydrogen utilized as a transportation fuel is viewed as a long term solution as it is sustainable and clean when derived from renewable resources. The development and use of hydrogen IC engine (H2ICE) technology can readily be utilized to drive the transition strategy from the petroleum economy to the hydrogen economy. Because the “more conventional” H2ICE systems can be brought to market more quickly and in higher volume, business initiatives for hydrogen fueling infrastructure and other hydrogen complimentary required technologies can be realized sooner. To that end Ford has fully re-engineered a 6.8L Triton V-10 engine to run on hydrogen and power an E-450 shuttle van.
Technical Paper

Development of a Gasoline Engine System Using HCCI Technology - The Concept and the Test Results

Homogeneous-charge compression-ignition (HCCI) technology has high potential to significantly reduce fuel consumption and NOx emissions over PFI engines. Control of the HCCI combustion process over the full range of conventional PFI operating conditions, however, has been a challenge. This study describes an HCCI-SI dual-mode engine system proposal based on new approaches to optimize the engine performance. A 0.658L single-cylinder engine was built and tested using these concepts. The engine was operated in HCCI mode from idle to 5.5 bar NMEP and up to 4750 rpm. NSFC in HCCI mode was about 175 g/kWh over most of the operating range except at very low load or near the high load boundary. At a part load of 1500 rpm and an equivalent BMEP of 2.62 bar, net indicated fuel efficiency was 50% higher than PFI engines and 30% higher than a prototype SC-DISI engine.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

Products and Intermediates in Plasma-Catalyst Treatment of Simulated Diesel Exhaust

A simulated diesel exhaust is treated with a nonthermal plasma discharge under steady state conditions. The plasma effluent is then passed through a sodium zeolite-Y (NaY) catalyst followed by a platinum oxidation catalyst. Detailed FTIR measurements of gas composition are taken before, between, and after the treatment stages. The plasma discharge causes oxidation of NO primarily to NO2, with methyl nitrate and nitric acid byproducts. At the same time, HC is partially oxidized, creating species such as formaldehyde, acetaldehyde, CO and other partial oxidation products. When this mixture passes over the NaY catalyst, part of the NOx is reduced to N2, with the remainder primarily in the form of NO. Methyl nitrate decomposes to form methanol and NOx, and nitric acid is consumed. There is little HC conversion on this catalyst. Small quantities of HCN and N2O are formed. When the mixture then passes over the platinum catalyst, further NOx conversion occurs.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Impact of Decarburization on the Fatigue Life of Powder Metal Forged Connecting Rods

A main requirement for a satisfactory function and service life of a forged powder metal connecting rod is the fatigue strength. Fatigue strength mainly depends on design, material, microstructure, and surface condition. Much work has been accomplished to optimize these factors, but still a variety of surface defects such as localized porosity, roughness, oxide penetration, decarburization, etc., can be developed during manufacturing. These surface defects impact the fatigue strength in various ways. The impact of the decarburized layer depth on the fatigue life of a forged powder metal connecting rod is the focus of this work. Several connecting rods were submitted to a Weibull test at the same loading pattern. After the fatigue tests, the connecting rods were divided into groups with different decarburized layer depths. Both Maximum Likelihood Estimates (MLE) and Rank Regression (RR) techniques were used to analyze test results from all the groups obtained.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Feasibility Study of an Online Gasoline Fractionating System for use in Spark-Ignition Engines

A fuel fractionating system is designed and commissioned to separate standard gasoline fuel into two components by evaporation. The system is installed on a Ricardo E6 single cylinder research engine for testing purposes. Laboratory tests are carried out to determine the Research Octane Number (RON) and Motoring Octane Number (MON) of both fuel fractions. Further tests are carried out to characterize Spark-Ignition (SI) and Controlled Auto-Ignition (CAI) combustion under borderline knock conditions, and these are related to results from some primary reference fuels. SI results indicate that an increase in compression ratio of up to 1.0 may be achieved, along with better charge ignitability if this system is used with a stratified charge combustion regime. CAI results show that the two fuels exhibit similar knock-resistances over a range of operating conditions.
Technical Paper

Study of a Stratified-Charge DISI Engine with an Air-Forced Fuel Injection System

A small-bore 4-stroke single-cylinder stratified-charge DISI engine using an air-forced fuel injection system has been designed and tested under various operating conditions. At light loads, fuel consumption was improved by 16∼19% during lean, stratified-charge operation at an air-fuel ratio of 37. NOx emissions, however, were tripled. Using EGR during lean, stratified-charge operation significantly reduced NOx emissions while fuel consumption was as low as the best case without EGR. It was also found that combustion and emissions near the lean limit were a strong function of the combination of injection and spark timings, which affect the mixing process. Injection pressure, air injection duration, and time delay between fuel and air injections also played a role. Generating in-cylinder air swirl motion slightly improved fuel economy.
Technical Paper

FordS Zero Emission P2000 Fuel Cell Vehicle

The P2000 Fuel Cell Electric Vehicle developed by Ford Motor Company is the first full-performance, full-size passenger fuel cell vehicle in the world. This development process has resulted in a vehicle with performance that matches some of today's vehicles powered by internal combustion engines. The powertrain in Ford's P2000 FCEV lightweight aluminum vehicle consists of an Ecostar electric motor/transaxle and a fuel cell system developed with XCELLSiS-The Fuel Cell Engine Company (formerly dbb Fuel Cell Engines, Inc.). Ballard's Mark 700 series fuel cell stack is a main component in the fuel cell system. To support this new FCEV, Ford has constructed the first North American hydrogen refueling station capable of dispensing gaseous and liquid hydrogen. On-going research and development is progressing to optimize fuel cell vehicle performance and refueling techniques.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

Design of an Integral Perforated Manifold, Muffler, and Catalyst

The development of an integrated Perforated Manifold, Muffler, and Catalyst (PMMC) for an automotive engine exhaust system is described. The design aims to reduce tailpipe emissions and improve engine power while maintaining low sound output levels from the exhaust. The initial design, based on simplified acoustic and fluid dynamic considerations, is further refined through the use of a computational approach and bench tests. A final prototype is fabricated and evaluated using fired engine dynamometer experiments. The results confirm earlier analytical estimates for improved engine power and reductions of emissions and noise levels.
Technical Paper

Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy

This paper is concerned with the Residual Gas Fraction measurement and estimation on a Homogeneous Charge Compression Ignition (HCCI) engine. A novel in-cylinder gas sampling technique was employed to obtain cyclic dynamic measurements of CO2 concentration in the compression stroke and in combination with CO2 concentration measurements in the exhaust stroke, cyclic Residual Gas Fraction was measured. The measurements were compared to estimations from a physical, 4-cylinder, single-zone model of the HCCI cycle and good agreement was found in steady engine running conditions. Some form of oscillating behaviour that HCCI exhibits because of exhaust gas coupling was studied and the model was modified to simulate this behaviour.
Technical Paper

Engine Radiated Noise Prediction Modeling Using Noise Source Decomposition and Regression Analysis

An engine's radiated noise level is a very important attribute required for delivering customer satisfaction. Having an accurate radiated noise prediction capability during the planning, target setting, and initial design phases is critical to making the up-front decisions that enable the timely and cost efficient delivery of an engine that meets its radiated noise goals. This paper describes a simple radiated noise model that is based on a combination of regression modeling and simplified analytical modeling. The regression model uses measured data from multiple tests that can be broken down to noise sources such as mechanical, combustion, and accessory components. The simple analytical models are used to determine the parameters that the decomposed noise data is regressed against. The model developed in the paper is then compared to previous models suggested in the literature and to measured data from engines.
Technical Paper

A Predictive Model for Feedgas Hydrocarbon Emissions: An Extension to Warm Engine Maps

A feedgas hydrocarbon emissions model that extends the usefulness of fully-warmed steady-state engine maps to the cold transient regime was developed for use within a vehicle simulation program that focuses on the powertrain control system (Virtual Powertrain and Control System, VPACS). The formulation considers three main sources of hydrocarbon. The primary component originates from in-cylinder crevice effects which are correlated with engine coolant temperature. The second component includes the mass of fuel that enters the cylinder but remains unavailable for combustion (liquid phase) and subsequently vaporizes during the exhaust portion of the cycle. The third component includes any fuel that remains from a slow or incomplete burn as predicted by a crank angle resolved combustion model.
Technical Paper

The Effects of Aging Temperature and Air-Fuel Ratio on the NOx Storage Capacity of a Lean NOx Trap

This paper summarizes results from a study on the effects of aging temperature and A/F ratio on the NOx storage capacity of a lean NOx trap. When aged at stoichiometry at 700°C, the NOx storage capacity of the NOx trap dropped considerably during the first 200 hours of aging and then at a much slower rate beyond 200 hours. The NOx storage capacity dropped more rapidly as the aging temperature increased, with the drop in capacity particularly evident between 900°C and 1000°C. The drop in NOx capacity was significantly larger for samples aged with part-time lean operation and/or part-time rich operation than for samples aged continuously at stoichiometry. The detrimental effects of lean and rich operation increased as the temperature increased. A Pt/Al2O3 model catalyst was exposed to reducing conditions at temperatures ranging from 670°C to 1041°C and then to oxidizing conditions over the same temperature range, and in-situ XRD was used to investigate Pt particle coarsening.
Technical Paper

Construction and Applications of a Mechanical Rattle-Sound Generator

A device consisting of a mass-loaded cantilever and a striker block mounted on an electromagnetic shaker can be used to create a wide variety of mechanical rattle sounds. The construction of the rattle mechanism is described and illustrated with diagrams. Examples of the different qualities of rattles that can be produced are presented as plots of microphone waveforms. The applications of such a device are primarily in support of the development, testing, and evaluation of rattle detection systems based on human experts or computers.