Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Making Connections: Methods of Direct Interaction in Distance Learning

2011-04-12
2011-01-1107
In today's fast pace world of innovation and technology, lifelong learning has become a necessity for anyone working in industry. This is especially true for those in alternative propulsion or other such rapidly evolving fields. Universities and other learning institutions are delivering ever more Distance Learning certificates, degrees, and programs in an effort to re-tool the technical workerforce. To ensure Distance Learning programs are effective, successful, and advantageous, personal interaction and direct connection in some form between the students, industry, and academia is instrumental. Communication and interaction are vital to learning, whether it is Distance Learning or other more traditional methods, and personal interaction should not be overlooked for any of these learning delivery methods.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
Technical Paper

Gen2 GF6 Transmission Hardware and Controls Updates

2011-04-12
2011-01-1428
In an effort to increase fuel economy and improve shift quality - the GF6 family of General Motors transmissions has been analyzed for potential enhancements. The focus of this analysis was to improve fuel economy, while increasing downshift responsiveness, and manual mode sport delays. This paper describes a variety of the hardware philosophy changes, and control methods which have contributed to the next generation of GM clutch-to-clutch 6-speed transmissions. These changes to hardware and controls have led to a composite fuel economy improvement of 4.5% with no changes to shift or torque-converter scheduling. In addition, the downshift responsiveness has been significantly improved to reduce delay times by approximately 50% while virtually eliminating the dependency on engine torque reductions - ultimately allowing for stacked downshifts to progress with minimal, if any, time between shifts. Additionally, “tap shift” delays have been significantly decreased to levels near 150 ms.
Technical Paper

Effects of Fretting Corrosion on Lift Glass

2011-04-12
2011-01-1434
The electrical architecture design of a rear back glass defrost grid system encompasses many critical criteria that must be integrated into the design. For example, the defrost clip location and interface to the glass must meet all vehicle performance requirements. If the defrost clip to the glass interface is not resistant to vibration and relative movement, detachment and loss of function can occur. This paper describes a back glass defrost clip with a solder joint that is robust to manufacturing variations and customer usage conditions. A designed experiment using Design for Six Sigma methodologies was performed to understand the effects of the attachment interface to the electrical wiring pigtail, and parameters that affect performance. The working constraints, testing set up, validation, and root cause investigation of the clip detachment phenomenon is covered in this paper.
Technical Paper

Feature Based Architecture Design and Functional Partitioning to Subsystems

2012-04-16
2012-01-0011
Vehicle development typically occurs by independently documenting requirements for individual subsystems, then packaging these subsystems into the vehicle and testing the feature operation at a higher level, across multiple subsystems. Many times, this independent development process results in integration problems at the vehicle level, such as incomplete feature execution, unexpected operation and information disconnects. The development team is left to debug and create inefficient patches at the vehicle level due to time constraints and / or planned release dates. Without architecting solutions at the feature level, miscommunication of expected feature operation leads to wasted time, re-work and customer dissatisfaction. While the development of vehicle level technical specifications provide feature expectations at the vehicle level, they do not solve the problem of how this operation is to be applied across multiple systems.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

A Numerical Approach to Evaluate the Aerodynamic Performance of Vehicle Exterior Surfaces

2011-04-12
2011-01-0180
This paper outlines a process to assess the aerodynamic performance of different vehicle exterior surfaces. The initial section of the paper summarizes the details of white-light scanning process that maps entire vehicle to points in Cartesian co-ordinate system which is followed by the conversion of scanned points to theme surface. The concept of point-cloud modeling is employed to generate a smooth theme surface from scanned points. Theme surfaces thus developed are stitched to under-body/under-hood (UB/UH) parts of the base vehicle and the numerical simulations were carried out to understand the aerodynamic efficiency of the surfaces generated. Specifics of surface/volume mesh generated, boundary conditions imposed and numerical scheme employed are discussed in detail. Flow field over vehicle exterior is thoroughly analyzed. A comparison study highlighting the effect of front grilles in unblocked condition along with air-dam on flow field has been provided.
Technical Paper

Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement in Conventional Vehicles

2011-04-12
2011-01-0345
In this paper, a low-cost means to improve fuel economy in conventional vehicles by employing ultracapacitor based Active Energy Recovery Buffer (AERB) scheme will be presented. The kinetic energy of the vehicle during the coast down events is utilized to charge the ultracapacitor either directly or through a dc-dc converter, allowing the voltage to increase up to the maximum permissible level. When the vehicle starts after a Stop event, the energy stored in the capacitor is discharged to power the accessory loads until the capacitor voltage falls below a minimum threshold. The use of stored capacitor energy to power the accessory loads relieves the generator torque load on the engine resulting in reduced fuel consumption. Two different topologies are considered for implementing the AERB system. The first topology, which is a simple add-on to the conventional vehicle electrical system, comprises of the ultracapacitor bank and the dc-dc converter connected across the dc bus.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Technical Paper

Method and System for Determining the Location of a Lost Vehicle Key Fob

2011-04-12
2011-01-0044
Key fobs, also known as remote keys or remote transmitters, have become a common piece of equipment in today's vehicle, being ubiquitous in every market segment. Once limited to remote locking and unlocking operations, today's key fobs can be used to control many comfort and security features beyond locking and unlocking, such as alarm system operation, vehicle locate, approach lighting, memory seat recall, and remote starting systems. Key fobs are designed to be easy to use as well as easy to carry and transport in personal containers, such as purses, pockets, wallets, and the like. Accordingly, as with other personal effects, key fobs and other portable remote devices can be lost or misplaced or can be otherwise difficult to find. Even with careful tracking of a remote device, children and pets, among other factors, can make location difficult. Moreover, multiple remote devices are often distributed with each vehicle.
Technical Paper

Adaptive Remote Vehicle Start Operation for Reduced Fuel Consumption

2011-04-12
2011-01-0045
Remote vehicle start systems are commonly available as an aftermarket accessory, and more recently, as a factory installed vehicle feature. These systems and their associated algorithms enable a user of the vehicle to remotely start the engine and/or other vehicle systems with the end goal of preconditioning the cabin environment, for example, if the user wishes to have the vehicle's interior heated or cooled before the user enters the vehicle. However, if the engine is remotely started for an extended period of time, the increased use of fuel, energy, and/or other resources may be greater than optimal or desired. Through the use of available vehicle sensors and enhanced algorithms, a system can be implemented which allows the passenger cabin to be heated or cooled to within a range of moderate temperatures, while reducing the resources utilized by the vehicle.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Particle Size and Number Emissions from Modern Light-Duty Diesel Vehicles

2011-04-12
2011-01-0632
This paper focuses on measuring particle emissions of a representative light-duty diesel vehicle equipped with different engine exhaust aftertreatment in close-coupled position, including one designed to meet the upcoming Euro 6 emission standards. The latter combines a lean NOx trap (LNT) and a diesel particulate filter (DPF) in series to simultaneously reduce NOx and PM. Particle Matter (PM) and particle number emissions are measured throughout testing procedure and instrumentation which are compliant with the UN-ECE Regulation 83 proposals. Specifically measuring devices for particle number emissions, provided by two different suppliers, are alternatively used. No significant differences are observed due to the different system employed. On the other hand particle size distributions are measured by means of a specific experimental set-up including a two stage dilution system and an electrical low pressure impactor (ELPI).
Technical Paper

Design Parameter Trade-off for Packaging of Stacked Prismatic Batteries

2011-04-12
2011-01-0667
Rechargeable energy storage systems with Lithium-ion pouch cells are subject to various ambient temperature conditions and go through thousands of charge-discharge cycles during the life time of operation. The cells may change their thickness with internal heat generation, cycling and any other mechanisms. The stacked prismatic cells thus experience face pressure and this could impact the pack electrical performance. The pack consists of stiff end plates keeping the pack in tact using bolts, cooling fins to maintain cell temperature and foam padding in between cells. The pack level thermal requirements limit the amount of temperature increase during normal operating conditions. Similarly, the structural requirements state that the stresses and the deflection in the end plates should be minimal. Uncertainties in cell, foam mechanical and thermal properties might add variation to the pack performance.
Technical Paper

Quantifying Enclosed Space and Cargo Volume

2011-04-12
2011-01-0781
Industry standards and practices define a number of mathematical and physical methods to estimate the cargo carrying volume capacity of a vehicle. While some have roots dating back decades, others try to assess the utility of the space for cargo by subjective measurements. Each these methods have their own inherent merits and deficiencies. The purpose of this paper is to highlight the differences in calculated cargo volume amongst the following practices: Society of Automobile Engineers (SAE) J1100[1] International Organization for Standardization (ISO 3832)[2], Global Car manufacturer's Information Exchange group (GCIE)[3], Consumer Reports[4]. This paper provides a method and associated rationale for constructing a new cargo volume calculation practice that attempts to harmonize these procedures into a more contiguous practice. This homologation will benefit publishing industry, vehicle manufacturers and customers alike.
X