Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of High Pressure Fuel Pump by using Hydraulic Simulator

2005-04-11
2005-01-0099
We developed a high-pressure fuel pump for a direct injection gasoline engine and used a hydraulic simulator to design it. A single plunger design is the major trend for high-pressure fuel pumps because of its simple structure and small size. However, the single plunger causes large pressure pulsation and an unstable flow rate, especially at high engine speed. Therefore, a fuel-pipe layout that inhibits the pressure pulsation and a flow-rate control that stabilizes the flow are the most important challenges in pump design. Our newly developed hydraulic simulator can evaluate the dynamic characteristics of a total fuel supply system, which consists of pump, pipe, injector, and control logic. Using this simulator, we have improved fuel flow by optimizing the outlet check valve lift and the cam profile, and we reduced pressure pulsation by optimizing the layout of fuel pipes. Our simulation results agreed well with our experimental results.
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

Development of Smooth Shift Control System with Output Torque Estimation

1995-02-01
950900
Most automatic transmissions are controlled in compliance with a predetermined program. Transient control during gear shift is also carried out according to a predetermined process. In this method a lot of labor is required to tune data tables. So we developed a tuning free system by feedback control using torque estimation technology and the experimental result is reported. Torque fluctuation during shift is detected and fed back to compare the torque reference, which is generated from the estimated torque itself. The engine torque is decreased by means of retarding the ignition spark advance, according to the comparison deviation. As a consequence of the feedback, the transient torque control is carried out without any tuning trouble, and better than usual torque fluctuation is obtained.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Journal Article

Vehicle-Level EMC Modeling for HEV/EV Applications

2015-04-14
2015-01-0194
Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
Journal Article

An Application of the Particle Velocity Transfer Path Analysis to a Hybrid Electric Vehicle Motor Sound

2013-05-13
2013-01-1999
A pioneering approach to implement transfer path analysis (TPA) is proposed in this paper through applying it to an automobile. We propose to use particle velocity as a measure of TPA, in addition to using sound pressure as a conventional measure for TPA. These two quantities together will give a comprehensive and complete definition of sound. Although sound pressure is a scalar, while particle velocity is a vector, it is also proposed that the same technique of the conventional sound pressure TPA should be independently applicable to each component of particle velocity vector. This has been experimentally verified with a study on our test box system. In this paper, we apply the proposed TPA to an actual vehicle to examine its applicability, advantages and limitations. The driving motor sound of a hybrid electric vehicle is chosen as the case study. A tri-axial particle velocity sensor which also measures sound pressure at the same point is utilized in the experiment.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Journal Article

Membership Middleware for Dependable and Cost-Effective X-by-Wire Systems

2008-04-14
2008-01-0478
Balancing between dependability and cost-effectiveness is essential to promote X-by-Wire systems in the next decade. To achieve this goal, we have so far proposed a network centric architecture based on a concept of autonomous decentralized systems, where if one node fails, the remaining normal nodes autonomously execute a backup control to maintain the system's functionality, as well as a membership middleware indispensable to this architecture to ensure the consistency of the node status information among all nodes. In this work, we implemented membership middleware on a hardware and software platform equivalent to one assumed to be used in actual X-by-Wire systems. This paper describes the implementation details and performance evaluation result, and shows that membership middleware and a real-time critical application can coexist within one microcontroller.
Journal Article

Automatic Curve Deceleration System Using Enhanced ACC with Navigation System

2008-04-14
2008-01-0922
We have developed a system for automatic deceleration upon entering curves to prevent collisions on tight curves on high-ways. The navigation system is used to determine safe speed negotiating the curve, defined as a speed that will keep lateral acceleration within a settled value. The navigation system sends the curve radius to a controller, which calculates the safe speed for the curve. The controller then sends the speed command to the ACC system, which adjusts the vehicle speed. One of the important features in this system is the estimation of the vehicle position, in terms of its distance from the curve entrance. Navigation systems have a certain amount of dispersion in positional accuracy. A front camera is used in our system to decrease this dispersion. This camera detects lane markers (white lines, raised pavement markers, etc.) using our line recognition technologies1).
Journal Article

A Study of a Multiple-link Continuously Variable Valve Event and Lift (VVEL) System

2008-06-23
2008-01-1719
A new variable valve event and lift (VVEL) system has been developed by applying a multiple-link mechanism. This VVEL system can continuously vary the valve event angle and lift over a wide range from an exceptional small event angle and small lift and to a large event angle and large lift. This capability offers the potential to improve fuel economy, power output, emissions and other parameters of engine performance. The valve lift characteristics obtained with the VVEL system consist of a synthesis of the oscillatory motion characteristics of the multiple-link mechanism and the oscillating cam profile. With the multiple-link mechanism, the angular velocity of the oscillating cams varies during valve lift, but the valve lift characteristics incorporate both gentle ramp sections and sharp lift sections, the same as a conventional engine.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper

Diagnostic Coverage Evaluation Method for Analog Circuits to Comply with Functional Safety Standards

2015-04-14
2015-01-0267
The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
Journal Article

Virtual Engine System Prototyping with High-Resolution FFT for Digital Knock Detection Using CPU Model-Based Hardware/Software Co-simulation

2009-04-20
2009-01-0532
We have developed a full virtual engine system prototyping platform with 4-cylinder engine plant model, SH-2A CPU hardware model, and object code level software including OSEK OS. The virtual engine system prototyping platform can run simulation of an engine control system and digital knock detection system including 64-pt FFT computations that provide required high-resolution DSP capability for detection and control. To help the system design, debugging, and evaluation, the virtual system prototyping consists of behavior analyzer which can provide the visualization of useful CPU internal information for control algorithm tuning, RTOS optimization, and CPU architecture development. Thus the co-simulation enables time and cost saving at validation stage as validation can be performed at the design stage before production of actual components.
Journal Article

Prediction of Vehicle Interior Noise from a Power Steering Pump using Component CAE and Measured Noise Transfer Functions of the Vehicle

2010-04-12
2010-01-0509
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
X