Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Different Low Temperature Combustion Strategies in a Small Single Cylinder Diesel Engine under Low Load Conditions

2017-10-08
2017-01-2363
Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
Technical Paper

A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine

2017-10-08
2017-01-2365
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
Technical Paper

A 6 Sigma Framework for the Design of Flatfish Type Autonomous Underwater Vehicle (AUV)

2009-04-20
2009-01-1190
Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUV). The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modelling and control of high performance AUVs. In this paper, a six sigma framework for the sensitivity analysis of a flatfish type AUV is presented. Robust design techniques such as Taguchi’s design method and statistical analysis tools such as Pareto-ANOVA, and ANOVA are used to identify the hydrodynamic parameters influencing the dynamic performance of an AUV. In the initial study, it is found that when the vehicle commanded in forward direction, it is in bow down configuration which is unacceptable for AUV motion. This is because of the vehicle buoyancy and shape of the vehicle. So the sensitivity analysis of pitch angle variation is studied by using robust design techniques.
X