Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Beam Layout and Specification on Side Door Strength of Passenger Cars: An Experimental Approach to Analyze Its Effect and Contribution to Door Strength.

2017-01-10
2017-26-0023
Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
Technical Paper

Study of Effect of Variation in Micro-Geometry of Gear Pair on Noise Level at Transmission

2015-01-14
2015-26-0130
Gear noise and vibration in automobile transmissions is a phenomenon of great concern. Noise generated at the gearbox, due to gear meshing, also known as gear whine, gets transferred from the engine cabin to the passenger cabin via various transfer paths and is perceived as air borne noise to the passengers in the vehicle. This noise due to its tonal nature can be very uncomfortable to the passengers. Optimizing micro-geometry of a gear pair can help in improving the stress distribution on tooth flank and reducing the sound level of the tonal noise generated during the running of the gearbox when that gear pair is engaged. This technical paper contains the study of variation in noise level in passenger cabin and contact on tooth flank with change in micro-geometry parameters (involute slope and lead slope) of a particular gear pair. Further scope of study has been discussed at the end of the paper.
Technical Paper

Latch Failure Prediction for Side Door Intrusion Test in CAE and Its Correlation with Physical Testing

2015-01-14
2015-26-0159
During vehicle development, numerous test are done to ensure safety & durability of the vehicle. One such test prescribed by regulation (IS 12009:1995) is side door intrusion test (SDIT). This test evaluates strength requirement of a side door of passenger cars to minimize the safety hazards caused by intrusion into passenger compartment in a side impact accident viz., initial, intermediate and peak crush resistance. In current scenario the passenger car manufacturers are striving hard on cost reduction by reducing the development cost. Thus, to predict the exact vehicle performance before its prototype stage is vital. This can be achieved by evaluating performance by the help of Computer aided engineering (CAE) During the SDIT, the load is applied to the outer surface of the door in an inward direction. This inward force applied by loading device is resisted by the door assembly, while door is pivoted at door latch and hinge.
Technical Paper

NVH Improvement by Design Optimization in Radiator Fan Module

2015-01-14
2015-26-0141
With increase in product diversity in passenger car market, the need for NVH comfort has gained very strong foothold in every segment. This needs in depth analysis for limiting the noise at part level. Radiator Fan Module is one of such part which contributes to Cabin comfort in major way. In this paper, author is focusing on designing of RFM (Radiator Fan Module) in order to have low noise. Primary objective of RFM is to meet Heat rejection requirement with optimized air flow. Radiator Fan is primarily responsible for meeting air flow requirement within specified noise limit. For flow inducing components like Radiator Fan, there is always a trade-off between the functional requirement and the noise from various sources (Electrical / Mechanical / Flow). Design of Fan blades and Motor Support ribs in RFM is critical to improve Flow noise, i.e. Air cutting noise.
Technical Paper

Challenges in Developing Low Rolling Resistance Tyre

2015-03-10
2015-01-0053
Vehicles in India will soon come with star ratings, signifying how environment-friendly they are. The OEM's have braced to improve fuel economy of their existing & upcoming models. Tyre rolling resistance is one of the significant factors for vehicle fuel consumption. Improvement in Fuel consumption is always a prime focus area & to improve it all major factors are considered. In newly launched models, the low rolling resistance tyre development was initiated. The project is challenging as it requires not only achieving low rolling resistance in smaller size tyres (12″ to 13″) but also required to meet other critical vehicle performance parameters like ride, handling, NVH & durability. Effects of Tyre construction, rubber compound were analyzed to achieve lower rolling resistance and better durability of tyre. In addition, the factors affecting the rolling resistance of tyre like inflation pressure, load, and speed in smaller tyre sizes (12″ to 13″) are discussed in this paper.
Technical Paper

Effect of Compression and Air Fuel Ratio on the Flame Kernel Development

2015-01-14
2015-26-0020
Cycle to cycle variations is always a cause for concern in port injected SI engines. Earlier studies in this field suggest that cycle by cycle variations in the position and growth rate of flame kernel has a significant role in the cycle by cycle variations in the pressure curves. Researchers are always interested in understanding the fluid flow and combustion characteristics in a running engine to study these variations in detail. Due to its simplicity in adaptation, fiber optic spark plug enables the researchers to study the effects of charge motion on the developing flame kernel at relatively less cost and effort. In this paper 8 channel fiber optic spark plug was used to measure and understand the flame kernel development. Flush mounted pressure transducer is also installed to measure in cylinder pressure data.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
Technical Paper

Design Optimization of Trunk Lid Torsion Bar Type Trunk Lid Pop Up Mechanism

2019-10-11
2019-28-0111
Trunk lid (TL) can be opened using hydraulic or pneumatic balancers, coil springs, torsion bars or combination of the above. TL Opening Mechanism specific to Trunk Lid Torsion Bar (TLTB) is being discussed in the paper. After de-latching, TL should open smoothly and stop at such a height that it is visible from driver seat. The system consists of a four bar linkage mechanism, in which the fixed link is formed by BIW Bracket. Connecting link, TL Hinge Arm and Torsion bar arm form the other three links. Hinge has its one end attached to TL and the other end to BIW bracket. Torsion bar arm transfers torque to TL hinge through the connecting link. Major challenges in designing TLTB mechanism are part tolerances, C.G position and Weight variations in individual parts, Torsion bar Raw Material variation, uncertain friction in the system etc.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Evaluation of Sound Radiation from Exhaust Muffler Shell-A Novel Experimental Approach

2013-03-25
2013-01-0116
Shorter product development cycles, densely packed engine compartments and intensified noise legislation has increased the need for accurate predictions of passenger cars Exhaust system noise at early design stages. The urgent focus on the increasing CO2 emissions and the efficiency of IC-engines as well as upcoming technologies might adversely affect the noise emission from an exhaust system, so it is becoming increasingly important to evaluate the sub system level noise emissions in an early design stage in order to predict and optimize the exhaust system performance. Engine performance and vehicle NVH characteristics are two important parameters on which the design of the exhaust system has major influence. The reduction of exhaust noise is a very important factor in controlling the exterior and interior noise levels of vehicles, particularly to reach future target values of the pass-by noise and sound engineering for the vehicle.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Analysis of Thermal Balance of Diesel Engine and Identification of Scope for Waste Heat Recovery

2013-11-27
2013-01-2744
Diesel engines as prime movers for passenger cars are becoming popular, primarily due to their superior thermal efficiency. However, the peak thermal efficiency does not exceed 35 to 40% even in the best engines. Huge efforts are being put in to improve engine efficiencies to meet ever stringent fuel economy requirements. Such efforts are mainly focused on combustion improvement and parasitic losses reduction. However, a large part of the energy input to engine is lost to cooling system, exhaust gases and other heat losses. Such losses are higher at part and low loads which is where the engine operates in normal usage conditions. This paper analyses in detail the various energy losses at different engine operating regimes. Quantification of losses and understanding of loss mechanism serves as a starting point for future technologies to recover the lost energy. Quantification of losses: Losses in different systems are quantified at different engine operating regimes.
Technical Paper

Base Engine Value Engineering for Higher Fuel Efficiency and Enhanced Performance

2013-11-27
2013-01-2748
To sustain market leadership position one has to continuously improve their product and services so that on one hand customer expectations are met and on the other hand business profitability is maintained. Value engineering is one of the approach through which we can achieve these two objectives simultaneously. Enhancing the value of running products is always a challenge as there is limited scope and flexibility to modify the current design and processes. Value engineering approach, integrated in product development cycle, brings great opportunity to upgrade the new and running products. This study reveals approach to upgrade the base engine of Maruti Alto. Upgraded engine is used in Alto 800 vehicle launched in October 2012. Improvement points were studied based on the business requirement, market competition, and legislative requirements. Based on functional improvement points, all the design parameters were studied and finalized.
Technical Paper

Approach for CO2 Reduction in India’s Automotive Sector

2019-11-21
2019-28-2388
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%.
Technical Paper

Methodology for Failure Simulation Using 4 Corner 6 DOF Road Load Simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. Due to non- linear nature of the vehicle parts, transmissibility of load is a complex phenomenon. Due to this complex transmissibility, good simulation at wheel center does not always ensure good correlation at all vehicle locations. The low level of correlation is common at the locations like engine mount, horn bracket and other overhanging brackets which are away from the wheel center.
Technical Paper

Study of Handling Behavior of a Passenger Vehicle after Addition of CNG Tank

2019-11-21
2019-28-2405
The objective of this paper is to study the change in handling behaviour of the dual-fuel vehicle fitted with a CNG tank to that of its single fuel (gasoline) counterpart. A validated CarSim model is run through steady state and transient state handling tests before and after the addition of CNG tank. The simulation results are used to compare the handling characteristics of the CNG vehicle with the reference vehicle. Further based on these results the suspension parameters are changed to find an optimum set-up for the actual CNG vehicle.
Technical Paper

SmartPlay Studio: A Connected Infotainment Development

2019-11-21
2019-28-2440
Infotainment has always been an important aspect of life which has made its way to car design. The cars today are much more advanced compared to their predecessors. The in-vehicle Infotainment advancements have followed the consumer electronics market in terms of technologies such as Touchscreen; App based Navigation, Voice Assistant and other multimedia services. This trend is going to expand further as smartphones have revolutionized the Infotainment domain with awareness and accessibility to customers. The Infotainment system in the cars are expected to be connected not only to the cloud but various vehicle controllers to display host of information & controls at customer`s fingertips. To design a system that supports connectivity to both cloud and vehicle is challenging in terms of cost and design for the OEMs. With focus on Indian market condition and global trends, this paper analyzes the customer expectation for Connected Infotainment system.
Technical Paper

Entry Level Connected Infotainment Unit with Smartphone and Vehicle Integration

2019-11-21
2019-28-2434
As we transition towards Internet of Things (IoT) - humans are connected to each other & outside world through the smartphone. Customers tend to use smartphones for varied purposes ranging from communication to entertainment. However, the concern of distraction exists due to poor visibility & accessibility of the phone’s screen in driving condition. One of the repercussion of being connected to smartphone particularly in driving condition includes higher number of road accidents due to distraction. This paper explains one of the key initiatives taken by Maruti Suzuki India Limited to address the same.
Technical Paper

Design Considerations for Plastic Fuel Rail and Its Benefits

2014-04-01
2014-01-1041
Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
X