Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

An Experimental Examination of J-Turn and Fishhook Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1008
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed in 2001, starting in the spring and continuing through the fall. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 1” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from one Characterization maneuver (the Slowly Increasing Steer maneuver) and four Rollover Resistance maneuvers are discussed (the NHTSA J-Turn, Fishhook 1a, Fishhook 1b, and Nissan Fishhook). Details regarding NHTSA's assessment of the Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are available in “Volume 2” [2].
Technical Paper

An Experimental Examination of Double Lane Change Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1009
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed during the spring through fall of 2001. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 2” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from four Rollover Resistance maneuvers are presented. The Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are discussed. Details regarding the NHTSA J-Turn, and the three fishhook maneuvers are available in “Volume 1” [2].
Technical Paper

Effects of Outriggers on Dynamic Rollover Resistance Maneuvers - Results from Phase V of NHTSA's Light Vehicle Rollover Research Program

2003-03-03
2003-01-1011
This paper describes the National Highway Traffic Safety Administration's (NHTSA) efforts to determine how different outrigger designs can affect J-Turn and Road Edge Recovery test maneuver outcome. Data were collected during tests performed with three different outrigger designs (made from aluminum, carbon fiber, and titanium) having different physical properties (geometry and weight). Four sport utility vehicles were tested: a 2001 Chevrolet Blazer, 2001 Toyota 4Runner, 2001 Ford Escape, and a 1999 Mercedes ML320. The 4Runner and ML320 were each equipped with electronic stability control, however the systems were disabled for the tests performed in this study. A detailed description of the testing performed and the results obtained are discussed. From the results, a comparison of how the three outrigger designs affected the test results is provided.
Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Development of a New Biofidelity Ranking System for Anthropomorphic Test Devices

2002-11-11
2002-22-0024
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-α, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, “External Biofidelity,” and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, “Internal Biofidelity.” The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Shoulder Impact Response and Injury Due to Lateral and Oblique Loading

2003-10-27
2003-22-0003
Little is known about the response of the shoulder complex due to lateral and oblique loading. Increasing this knowledge of shoulder response due to these types of loading could aid in improving the biofidelity of the shoulder mechanisms of anthropomorphic test devices (ATDs). The first objective of this study was to define force versus deflection corridors for the shoulder corresponding to both lateral and oblique loading. A second focus of the shoulder research was to study the differences in potential injury between oblique and lateral loading. These objectives were carried out by combining previously published lateral impact data from 24 tests along with 14 additional recently completed lateral and oblique tests. The newly completed tests utilized a pneumatic ram to impact the shoulder of approximately fiftieth percentile sized cadavers at the level of the glenohumeral joint with a constant speed of approximately 4.4 m/sec.
Technical Paper

On the Development of the SIMon Finite Element Head Model

2003-10-27
2003-22-0007
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Design and Development of a Thor-Based Small Female Crash Test Dummy

2003-10-27
2003-22-0024
This paper describes the design and development of a small female crash test dummy, results of biofidelity tests, and preliminary results from full-scale, 3-point belt and airbag type sled tests. The small female THOR was designed using the anthropometric data developed by Robbins for the 5th percentile female and biomechanical requirements derived from scaling the responses of the 50th percentile male. While many of the mechanical components of the NHTSA THOR 50th percentile male dummy were scaled according to the appropriate anthropometric data, a number of improved design features have been introduced in the new female THOR. These include; improved neck design, new designs for the head and neck skins: and new designs for the upper and lower abdomen. The lower leg, ankle and foot, known as THOR-FLx, were developed in an earlier effort and have been included as a standard part of the new female dummy.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Air bag crash investigations

2001-06-04
2001-06-0009
The performance of air bags, as an occupant protection system, is of high interest to the National Highway Traffic Safety Administration (NHTSA or Agency). Since 1972, the NHTSA has operated a Special Crash Investigations (SCI) program which provides in-depth crash investigation data on new and rapidly changing occupant protection technologies in real-world crashes. The Agency uses these in-depth data to evaluate vehicle safety systems and form a basis for rulemaking actions. The data are also used by the automotive industry and other organizations to evaluate the performance of motor vehicle occupant protection systems such as air bags. This paper presents information from NHTSA's SCI program concerning crash investigations on air-bag-equipped vehicles. The paper focus is on data collection and some general findings in air bag crash investigations including: air-bag-related fatal and life-threatening injuries; side air bags; redesigned air bags and advanced air bags.
Technical Paper

NHTSA's Compatibility Research Program Update

2001-03-05
2001-01-1167
This paper provides an update of NHTSA's research activities in vehicle compatibility and aggressivity. This paper pres ents new ly initiated efforts underw ay to develop test assessment meth odologie s intende d to evalua te vehic le compatibility. The rigid barrier load cell data collected from 18 years of the agency's New Car Assessment Program testing are reviewed to e valuate potentia l test measures that may be used to evaluate a vehic le's compatibility in vehicle-to-vehicle crashes. These parameters are then evaluated using a series of vehicle-to-vehic le and m oving deformable ba rrier (MDB)-to -veh icle tests. In these tests, the face of the MDB has been instrumented with an array of load cells to compute test measures. This study is part of NHTSA's ongoing compatib ility research program and is being coordinated with the IHRA compatibility group.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
X