Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Technical Paper

Friction Bit Joining of Dissimilar Material Combinations of High Strength Steel DP 980 and Al Alloy AA 5754

2009-04-20
2009-01-0031
A new spot joining technology relying on a consumable joining bit has been developed and evaluated on dual phase (DP) 980 steel and a dissimilar combination of aluminum alloy 5754-O and DP 980. This new process, called friction bit joining (FBJ), uses a consumable bit to create a solid-state joint in sheet materials by the action of cutting and frictional bonding. A series of experiments were done in which different welding parameters were employed and lap shear tension testing was carried out to evaluate performance. The best lap shear values averaged 6.5 kN.
Journal Article

Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

2012-04-16
2012-01-0480
Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si₃N₄ ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2 kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint.
Journal Article

Friction Stir Spot Welding for Structural Aluminum Sheets

2009-04-20
2009-01-0023
The Friction Stir Spot Welding (FSSW) process is a derivative of the friction stir welding (FSW) process, without lateral movement of the tool during the welding process. It has been applied in the production of aluminum joining for various Mazda and Toyota vehicles. Most of the applications and published studies were concentrated in aluminum sheet in the range of 1.0 to 1.5 mm, suitable for non-structural automotive closure applications. The objective of this study is to study the feasibility of FSSW process for automotive structural aluminum joining, up to 3 mm in thickness, for potentially replacement of self-piercing rivets (SPR) process. Joining thicker aluminum with FSSW tooling with a typical smooth concave shoulder and threaded probing pin, requires long process time, which would not be appropriate in mass-production automotive body construction. In this paper, an innovative FSSW tool with grooved shoulder was developed.
Technical Paper

Heavy Vehicle Propulsion Materials Program

1999-04-28
1999-01-2254
The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future.
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Journal Article

Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

2014-04-01
2014-01-1004
Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production (“Baseline”), an advanced high strength steel and aluminum design (“LWSV”), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Journal Article

Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

2014-01-15
2013-01-9092
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Technical Paper

Low Density and Temperature Tolerant Alloys for Automotive Applications

2017-03-28
2017-01-1666
Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
Technical Paper

Material Modeling Effects on Impact Deformation of Ultralight Steel Auto Body

2000-10-03
2000-01-2715
This paper describes the results of the computational analysis of UltraLight Steel Auto Body (ULSAB) crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel intensive vehicle was analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels.
Technical Paper

Material Property Characterization of Foilback Damping Treatments Using Modified ASTM Equations

2003-05-05
2003-01-1585
In the automotive industry, in order to characterize and evaluate damping treatments, it is a common practice to employ Oberst bar tests as specified by ASTM E756 and SAE J1637. The ASTM standard provides equations for sandwiched Oberst bars. These equations allow engineers to extract the properties of the visco-elastic core. For certain type of automotive constrained-layer damping treatments, such as the Aluminum Foilback, it is often convenient and desirable to prepare the Oberst bar samples with production-intent configuration. Unfortunately, these configurations are often asymmetric. Therefore, the composite Oberst bar data cannot be post-processed by employing the ASTM equations. In this study, the ASTM equations for sandwiched bars are modified to accommodate for asymmetric Oberst bar configurations. The finite element method is used to validate the derived equations by performing a “Virtual Oberst Bar test.”
Technical Paper

Metal Compression Forming - A New Process for Structural Aluminum Alloy Castings

1998-08-11
982107
Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process. The paper describes the casting process development involved in the production of an aluminum A357 alloy motor mount bracket, including the use of a filling and solidification model to design the gating and determine process parameters. Tensile properties of the component are presented and correlated with those of forged components.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Mode I Fracture Testing of Adhesively Bonded Joints

1999-03-01
1999-01-1253
Several standard methods exist for testing composites, metals and plastics in Mode I fracture. However, these standard test methods have limitations that disqualify them as candidates for testing certain automotive materials. In order to conduct successful fracture toughness tests with these automotive materials, a modified double cantilever beam testing geometry and associated new procedure have been developed. Both the test procedure and the data analysis have been fully documented in a draft standard. Representative SRIM composite, e-coat steel and epoxy were selected to develop and validate the testing procedure.
Technical Paper

Modeling of Strain Rate Effects in Automotive Impact

2003-03-03
2003-01-1383
This paper deals with the effects of various approaches for modeling of strain rate effects for mild and high strength steels (HSS) on impact simulations. The material modeling is discussed in the context of the finite element method (FEM) modeling of progressive crush of energy absorbing automotive components. The characteristics of piecewise linear plasticity strain rate dependent material model are analyzed and various submodels for modeling of impact response of steel structures are investigated. The paper reports on the ranges of strains and strain rates that are calculated in typical FEM models for tube crush and their dependence on the material modeling approaches employed. The models are compared to the experimental results from drop tower tests.
Journal Article

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

2011-04-12
2011-01-0033
Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation.
Technical Paper

Next Generation Casting Process Models - Predicting Porosity and Microstructure

1998-08-11
982113
The computer-aided-design and analysis of a robust casting process requires the optimization of both mold filling and solidification. A number of commercial casting codes are available for modeling the fluid flow during mold filling and the heat transfer during solidification. The next generation casting process models will build on present capabilities to allow the prediction of microporosity and other defects and microstructure. This paper will discuss the issues involved in the development of next generation casting process models and present results from a computer model for microporosity prediction that is based on first principles, and will take into account alloy composition, alloy microstructure, the initial hydrogen content of the liquid alloy, and the resistance to inter-dendritic fluid flow to feed shrinkage.
X