Refine Your Search

Topic

Author

Search Results

Technical Paper

High Performance Actuation System Enabled by Energy Coupling Mechanism

2013-09-24
2013-01-2344
This paper introduces a high performance actuation mechanism to enable new systems and improve the performance and efficiency of existing systems. The concept described is based on coupling energy storage mechanisms with translational movement to increase the speed and controllability of linear actuators. Initial development is a high speed linear actuator for hydraulic proportional valves, and the concept can be extended into other applications. With high speed proportional valves, the performance of existing cam phasing systems can be improved or the actuation mechanisms can be applied directly to IC engine valve actuation. Other applications include active suspension control valves, transmission control valves, industrial and commercial vehicle fluid power systems, and fuel injection systems. The stored actuation energy (such as a rotating mass) is intermittently coupled and decoupled to produce linear or rotary motion in the primary actuator.
Technical Paper

Pump Controlled Steer-by-Wire System

2013-09-24
2013-01-2349
Modern on-road vehicles have been making steady strides when it comes to employing technological advances featuring active safety systems. However, off-highway machines are lagging in this area and are in dire need for modernization. One chassis system that has been receiving much attention in the automotive field is the steering system, where several electric and electrohydraulic steering architectures have been implemented and steer-by-wire technologies are under current research and development activities. On the other hand, off-highway articulated steering vehicles have not adequately evolved to meet the needs of Original Equipment Manufacturers (OEM) as well as their end customers. Present-day hydrostatic steering systems are plagued with poor energy efficiency due to valve throttling losses and are considered passive systems relative to safety, adjustability, and comfort.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Real-Time On-Board Indirect Light-Off Temperature Estimation as a Detection Technique of Diesel Oxidation Catalyst Effectiveness Level

2013-04-08
2013-01-1517
The latest US emission regulations require dramatic reductions in Nitrogen Oxide (NOx) emissions from vehicular diesel engines. Selective Catalytic Reduction (SCR) is the current technology that achieves NOx reductions of up to 90%. It is typically mounted downstream of the existing after-treatment system, i.e., after the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF). Accurate prediction of input NO₂:NO ratio is useful for control of SCR urea injection to reduce NOx output and NH₃ slippage downstream of the SCR catalyst. Most oxidation of NO to NO₂ occurs in the DOC since its main function is to oxidize emission constituents. The DOC thus determines the NO₂:NO ratio as feedgas to the SCR catalyst. The prediction of NO₂:NO ratio varies as the catalyst in the DOC ages or deteriorates due to poisoning. Thus, the DOC prediction model has to take into account the correlation of DOC conversion effectiveness and the aging of the catalyst.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Externally Electro-Pneumatically Shifting System (E.P.S) to Install on Manual Transmissions

2012-09-24
2012-01-1994
In this study, an Electro-pneumatic shifting system (E.P.S) has been designed to install on manual transmissions to make the selecting and shifting process faster and more reliable compared to manual systems. Shifting mechanism of a six speed gear box has been improved by using two tandem pneumatic cylinders, position sensors, pneumatic valves, and a controlling board based on AVR microcontroller. The central processing unit uses an electronic control system to provide the optimized operation of shift mechanism. This system can be easily adjusted in order to install externally on manual transmission systems without any changes on housing and transmission shift links.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Journal Article

Gerotor Pumps for Automotive Drivetrain Applications: A Multi Domain Simulation Approach

2011-09-13
2011-01-2272
This paper presents a simulation model for the analysis of internal gear ring pumps. The model follows a multi domain simulation approach comprising sub-models for parametric geometry generation, fluid dynamic simulation, numerical calculation of characteristic geometry data and CAD/FEM integration. The sub-models are interacting in different domains and relevant design and simulation parameters are accessible in a central, easy to handle graphical user interface. The potentials of the described tool are represented by simulation results for both steady state and transient pump operating conditions and by their correlation with measured data. Although the presented approach is suitable to all applications of gear ring pumps, a particular focus is given to hydraulic actuation systems used in automotive drivetrain applications.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Regenerative Hydraulic Topographies using High Speed Valves

2009-10-06
2009-01-2847
This paper presents hydraulic topographies using a network of valves to achieve better energy efficiency, reliability, and performance. The Topography with Integrated Energy Recovery (TIER) system allows the valves and actuators to reconfigure so that flow from assistive loads on actuators can be used to move actuators with resistive loads. Many variations are possible, including using multiple valves with either a single pump/motor or with multiple pump/motors. When multiple pump/motors are used, units of different displacements can be chosen such that units are controlled to minimize time operating at low displacement, thus increasing overall system efficiency. Other variations include configurations allowing open loop or closed loop pump/motors to be used, the use of fixed displacement pump/motors, or the ability to store energy in an accumulator. This paper gives a system level overview and summarizes the hydraulic systems using the TIER approach.
Technical Paper

Influence of Line Length Concerning Noise Source Generation in Hydrostatic Transmissions

2008-10-07
2008-01-2722
The objective of this work is to demonstrate the influence of line length concerning noise source generation using a coupled pump-motor-line model predicting superimposed pulsations of a hydrostatic transmission. This transmission model predicts superimposed flow pulsations throughout the connecting lines as well as oscillating forces dependant on system pressure variances; such oscillations are the primary sources of noise in hydrostatic transmissions which are known as FBN and SBN (Fluid Borne Noise and Structure Borne Noise), respectively. This study is a part of novel research where the prediction of superimposed noise sources considering interrelating dynamics of the pump/motor and connecting lines is accomplished and can potentially be used to develop noise source reduction strategies. An investigation considering the influence of line length demonstrates the potential to further reduce noise source generation in hydrostatic transmissions.
Journal Article

Modeling and Simulation of a Hydraulic Steering System

2008-10-07
2008-01-2704
Conventional hydraulic steering systems keep improving performance and driving comfort by introducing advanced features via mechanical design. The ever increasing mechanical complexity requires the advanced modeling and simulation technology to mitigate the risks in the early stage of the development process. In this paper, we focus on advanced modeling tools environment with an example of a load sensing hydraulic steering system. The complete system architecture is presented. Analytical equations are developed for a priority valve and a steering control unit as the foundation of modeling. The full version of hydraulic steering system model is developed in Dymola platform. In order to capture interaction between steering and vehicle, the co-simulation platform between the hydraulic steering system and vehicle dynamics is established by integrating Dymola, Carsim and Simulink.
Journal Article

Multi-objective Optimization Tool for Noise Reduction in Axial Piston Machines

2008-10-07
2008-01-2723
Noise generation in axial piston machines can be attributed to two main sources; fluid borne and structure borne. Any attempt towards noise reduction in axial piston machines should focus on simultaneous reduction of these two sources. A multi-parameter multi-objective optimization approach to design valve plates to reduce both sources of noise for pumps which operate in a wide range of operating conditions has been detailed in a previous work (Seeniraj and Ivantysynova, 2008). The focus of this paper is to explain the background and to demonstrate the functionality and usefulness of the methodology for pump design.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Assessment of Absorbers in Normal-Incidence Four- Microphone Transmission-Loss Systems to Measure Effectiveness of Materials in Lateral-Flow Configurations of Filled or Partially Filled Cavities

2007-05-15
2007-01-2190
The four-microphone standing wave tube system has proven useful for measuring the absorption and transmission loss of various fibrous and non-fibrous absorbers. The system is fast, repeatable, accurate and compact. This paper discusses the advantages of the four-microphone system for measuring the transmission loss in lateral-flow absorber systems. The original four-microphone round impedance tube system and the migration to a four-microphone square tube system are discussed. The four-microphone square tube system allows effective study of filled and partially filled cavities.
Technical Paper

1-D Dynamic Diesel Particulate Filter Model for Unsteady Pulsating Flow

2007-04-16
2007-01-1140
A fast time-scale 1-D dynamic diesel particulate filter model capable of resolving the pressure pulsations due to individual cylinder firing events is presented. The purpose of this model is to investigate changes in the firing frequency component of the pulsating exhaust flow at different particulate loadings. Experimental validation data and simulation results clearly show that the magnitude and phase of the firing frequency components are directly correlated to the mass of particulate stored in a diesel particulate filter. This dynamic pressure signal information may prove particularly useful for monitoring particulate load during vehicle operation.
Technical Paper

Correlating Dynamic Pressure Signal Features to Diesel Particulate Filter Load

2007-04-16
2007-01-0333
The firing frequency components of the dynamic diesel particulate filter pressure signals carry significant information about the particulate load. Specifically, the normalized magnitude and relative phase of the firing frequency components exhibit clear dependence on the particulate load in a filter. Further, the test-to-test variation and back-to-back repeatability in this work was better for the dynamic pressure signal features than for the mean value pressure drop. This work provides a promising extension or alternative to the mean value pressure drop correlation to particulate load through Darcy's Law. The results may be particularly useful for filter monitoring and control.
X