Refine Your Search




Search Results

Technical Paper

Future Emission Concepts versus Fuel Quality Aspects - Challenges and Technical Concepts

From current point of view future emission legislations for heavy-duty engines as well as industrial engines will require complex engine internal measures in combination with sophisticated aftertreatment systems as well as according control strategies to reach the emission targets. With EU VI, JP 09/NLT and US10 for heavy-duty engines as well as future Tier4 final or stage IV emission legislation for industrial applications, EGR + DPF + SCR probably will be combined for most applications and therefore quite similar technological approaches will be followed up in Europe as well as in the US and in Japan. Most “emerging markets” all over the world follow up the European, US or Japanese emission legislation with a certain time delay. Therefore similar technologies need to be introduced in these markets in the future. On the other hand specific market boundary conditions and requirements have to be considered for the development of tailored system concepts in these markets.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Reducing Emissions and Improving Fuel Economy by Optimized Combustion of Alternative Fuels

Alternative fuels, especially fuels based on biological matter, are gaining more and more attention. Not only as a pure substitute of oil but also in terms of a possibility for further reduction in emission and as an option to improve the global CO2 balance. For improving the engine performance (emissions, fuel consumption, torque and drivability) the adjustment of fuel injection, the fuel evaporation process and the combustion process itself is paramount. In order to exploit the full potential of alternative fuels excellent knowledge of the fuel properties, including the impact on ignition and flame propagation, is required. This needs suitable tools for analysis of the fuel injection and combustion process. These tools have to support the optimization of the combustion system and the dynamic engine calibration for lowest emissions and most efficient use of fuel. As the term “Alternative Fuels” covers a very wide area a brief overview on available fuel types will be made.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Gasoline Direct Injection: Actual Trends and Future Strategies for Injection and Combustion Systems

Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.