Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Light Duty Vehicle Life Cycle Analysis

2021-04-06
2021-01-0789
The short-term future direction of the automotive transportation sector is uncertain. Many governments and environmental localities around the world are proposing internal combustion engine (ICE) bans and enacting large subsidy programs for zero-tailpipe emissions vehicles powered by batteries or fuel-cells. Such policies can be effective in driving the consumer towards specific powertrains. The reason for such aggressive change is to reduce the sector’s carbon footprint. However, it is not clear if these proposals will reduce greenhouse gas (GHG) emissions. Emissions from raw material extraction, manufacturing, and power generation are shadowed by the focus on reducing the reliance on fossil fuel use. Emissions from non-tailpipe sources should also be considered before pushing for a rapid change to powertrains. Life-cycle analysis (LCA) can assess the GHG emissions produced before, during and after the life of a vehicle in a cradle-to-grave analysis.
Journal Article

CARB Low NOX Stage 3 Program - Final Results and Summary

2021-04-06
2021-01-0589
Despite considerable progress over the last several decades, California continues to face some of the most significant air quality problems in the United States. These continued issues highlight the need for further mobile source NOX reductions to help California and other areas meet ambient air quality targets mandated by the U.S. EPA. Beginning in 2014, the California Air Resources Board (CARB) launched a program aimed at demonstrating technologies that could enable heavy-duty on-highway engines to reach tailpipe NOX levels up to 90% below the current standards, which were implemented in 2010. At the same time, mandated improvements to greenhouse gas emissions (GHG) require that these NOX reductions be achieved without sacrificing fuel consumption and increasing GHG emissions.
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

Deposit Mitigation in SCR Aftertreatment Systems by Deposition of LotusFlo® Superhydrophobic Coatings on Exhaust Pipe Surfaces

2021-04-06
2021-01-0571
The objective of this research was to mitigate urea-derived deposit formation within selective catalytic reduction (SCR) aftertreatment systems by application of specific superhydrophobic coatings to exhaust pipe surfaces. Coatings were applied using a plasma immersion ion processing (PIIP)-like process denoted LotusFlo™. This process utilizes high DC-impulse power waveforms in conjunction with appropriate chemical precursors to generate coatings suited to a specific application. For the present research, organosiloxane (Lotus-130) and fluorinated organosiloxane (Lotus-131) coated surfaces were evaluated. Deposit accumulation studies were executed using the Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) burner system. An in-situ imaging system was installed in the ECTO-Lab to observe differences in the deposit formation process between coated and uncoated exhaust pipes.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Technical Paper

Impact of Selective Catalytic Reduction Process on Nonvolatile Particle Emissions

2021-04-06
2021-01-0624
Particulate matter (PM) and NOX are two major pollutants generated by diesel engines. Modern diesel aftertreatment systems include selective catalytic reduction (SCR) technology that helps reduce tailpipe NOX emissions when coupled with diesel exhaust fluid (DEF/urea) injection. However, this process also results in the formation of urea derived byproducts that can influence non-volatile particle number (PN) measurement conducted in accordance with the European Union (EU) Particle Measurement Program (PMP) protocol. In this program, an experimental investigation of the impact of DEF injection on tailpipe PN and its implications for PMP compliant measurements was conducted using a 2015 model year 6.7 L diesel engine equipped with a diesel oxidation catalyst, diesel particulate filter and SCR system. Open access to the engine controller was available to manually override select parameters.
Technical Paper

Development of an In-Situ Diagnostic to Detect Lithium Plating in Commercial Automotive Battery Cells

2021-04-06
2021-01-0749
Lithium plating refers to the phenomenon where lithium metal is deposited onto the surface of the anode instead of being intercalated into the carbon sites of the graphite. The lithium metal will cover a portion of the surface area of the anode, which blocks intercalation sites and increases charge gradients. Lithium plating most often occurs when charging the battery at low ambient temperatures or at a high current rate, but lithium plating formation has also been linked to solid electrolyte interface (SEI) growth towards the later stages of life. Lithium plating may significantly reduce a battery cell’s performance in terms of charge capacity, and if severe enough, the lithium metal may form a bridge across the separator of the cell, leading to short circuits and potential safety concerns. The internal research performed by Southwest Research Institute explored how to create a battery model to detect the formation of lithium plating in real time.
Technical Paper

Modeling and Predicting Mechanically Induced Internal Short Circuits in Lithium Ion Battery Packs

2021-04-06
2021-01-0750
As advances in electrification continue within the vehicle industry, improving the front-end design process and managing the safety aspects of lithium-ion batteries is increasingly important. Structural damage to lithium-ion batteries can cause internal short circuit, leading to a large energy release that can lead to fire and thermal runaway that propagates throughout the battery pack. Southwest Research Institute has developed a mechanical model that can accurately predict mechanically-induced damage to lithium-ion battery cells and battery packs. This model also predicts whether the external damage will cause an internal short-circuit. This modeling process was illustrated using 21700 cylindrical cells with NCA cathode chemistry. High-speed impact tests were used to calibrate a single cell model, which was then scaled to a 12-cell battery module. This model was then used to accurately predict the outcome of an impact test on a 72-cell battery module.
Technical Paper

The Diesel Aftertreatment Accelerated Aging Cycle Protocol: An Advanced Aftertreatment Case Study

2020-09-15
2020-01-2210
As agencies and governing bodies evaluate the feasibility of reduced emission standards, additional focus has been placed on technology durability. This is seen in proposed updates, which would require Original Equipment Manufacturers (OEMs) to certify engine families utilizing a full useful life (FUL) aftertreatment system. These kinds of proposed rulings would place a heavy burden on the manufacturer to generate FUL components utilizing traditional engine aging methods. Complications in this process will also increase the product development effort and will likely limit the amount of aftertreatment durability testing. There is also uncertainty regarding the aging approach and the representative impact compared to field aged units. Existing methodologies have evolved to account for several deterioration mechanisms that, when controlled, can be utilized to create a flexible aging protocol. As a result, these methodologies provide the necessary foundation for continued development.
Technical Paper

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

2020-04-14
2020-01-1282
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input.
Technical Paper

A Controls Overview on Achieving Ultra-Low NOx

2020-04-14
2020-01-1404
The California Air Resources Board (CARB)-funded Stage 3 Heavy-Duty Low NOX program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOX emission over certification cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over various heavy-duty drive cycles. A Cylinder De-Activation (CDA) system enabled engine was integrated with an advanced after-treatment controller and system package. Southwest Research Institute (SwRI) had implemented a model-based controller for the Selective Catalytic Reduction (SCR) system in the CARB Stage 1 Low-NOX program. The chemical kinetics for the model-based controller were further tuned and implemented in order to accurately represent the reactions for the catalysts used in this program.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Evaluation of an On-Board, Real-Time Electronic Particulate Matter Sensor Using Heavy-Duty On-Highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized exhaust particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Currently, non-real-time resistive-type sensors are used by engine OEMs onboard vehicles. Future OBD regulations are likely to lower PM OBD thresholds requiring higher sensitivity sensors with better data yield for OBD decision making. The focus of this work was on the experimental evaluation of a real-time PM sensor manufactured by EmiSense Technologies, LLC that may offer such benefits. A 2011 model year on-highway heavy-duty diesel engine fitted with a diesel oxidation catalyst (DOC) and a catalyzed DPF followed by urea-based selective catalytic reducer (SCR) and ammonia oxidation (AMOX) catalysts was used for this program.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOX control for diesel engines provided the exhaust aftertreatment inlet temperature remains at 200° C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200° C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190° C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed, which add additional expense. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Technical Paper

CARB Low NOx Stage 3 Program - Modified Engine Calibration and Hardware Evaluations

2020-04-14
2020-01-0318
With the conclusion of the California Air Resources Board (CARB) Stage 1 Ultra-Low NOX (ULN) program, there continues to be a commitment for identifying potential pathways to demonstrate 0.02 g/bhp-hr NOX emissions. The Stage 1 program focused on achieving the ULN levels on the heavy-duty regulatory cycles utilizing a turbo-compound engine which required the integration of novel catalyst technologies and a supplemental heat source. While the aftertreatment configuration provided a potential solution to meet the ULN target, a complicated approach with a greenhouse gas (GHG) penalty was required to overcome challenges from low temperature exhaust. A subsequent Stage 2 program was concerned with the development of a new low load test cycle and evaluating the trade-off between GHG and tailpipe NOX on the Stage 1 ULN solution.
Journal Article

Investigation into Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalyst and Surfactant

2020-04-14
2020-01-1316
Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation selective catalytic reduction (SCR) aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources, and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work was to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of a titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactant to the fluid. Physical solid mixtures of urea with varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 produced upon thermal decomposition were quantified.
X