Refine Your Search

Topic

Author

Search Results

Technical Paper

Emission Control Strategies for Small Utility Engines

1991-09-01
911807
Recent approval of emission standards for small utility engines by the California Air Resources Board(1)* suggests that substantial reductions in emissions from small utility engines will soon be required. While 1994 standards may be met with simple engine adjustments or modifications, 1999 standards are much more stringent and may require the use of catalysts in conjunction with other emission reduction technologies. Assessing the feasibility of candidate emission control strategies is an important first step. Various emission reduction technologies were applied to three different 4-stroke engines. Emission tests were conducted to determine the effectiveness of air/fuel ratio changes, thermal oxidation, exhaust gas recirculation, and catalytic oxidation with and without supplemental air. Results of these evaluations, along with implications for further work, are presented. One engine's emissions were reduced below the levels of 1999 ARB standards.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Probabilistic Structural Analysis Methods

1988-04-01
880784
The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the structural response. This paper provides an overview of the methodology and discusses validation of modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as stress, displacement, natural frequencies, buckling loads, transient responses, etc. The structural analysis solution is in terms of the cumulative distribution function (CDF). Probabilistic structural analysis methods (PSAM) can be used to estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior.
Technical Paper

Options for the Introduction of Methanol as a Transportation Fuel

1987-11-01
872166
It is generally recognized chat methanol is the best candidate for long-term replacement of petroleum-based fuels at soma time in the future. The transition from an established fuel to a new fuel, and vehicles that can use the new fuel, is difficult, however. This paper discusses two independent investigations of possible transition uses of methanol, which, when combined, may provide an option for introduction of methanol that takes advantage of the existing industrial base, and provides economic incentives to the consumer. The concept combines the intermediate blends of methanol and gasoline (50%-70% methanol) with the Flexible Fuel Vehicle. In addition to a possible maximum cost effectiveness, these fuels ease vehicle range restrictions due to refueling logistics, and mitigate cold starting problems, while at the same time providing most of the performance of the higher concentration blends.
Technical Paper

Cetane Number Prediction from Proton-Type Distribution and Relative Hydrogen Population

1986-10-01
861521
A theoretical model for predicting cetane number of primary reference fuels from parameters measurable by proton nuclear magnetic resonance is presented. This modeling technique is expanded to include secondary reference fuels, pure hydrocarbons, and commercial-type fuels. An evaluation of the ignition process indicated that not only hydrogen type distribution measurable by proton NMR, but also relative hydrogen population is important in predicting cetane number. Two mathematical models are developed. One predicts cetane number of saturate fuels and the second predicts cetane number of fuels containing aromatic components. The aromatic fuel model is tested using the ASTM Diesel Check Fuels and shown to predict within the standard error of the model.
Technical Paper

Performance and Emissions of Ethanol and Ethanol-Diesel Blends in Direct-Injected and Pre-Chamber Diesel Engines

1982-02-01
821039
Fumigation, inline mixing, chemically stabilized emulsions and cetane improvers were evaluated as a means of using ethanol in diesel engines. Two turbocharged six-cylinder engines of identical bore and stroke were used, differing in combustion chamber type. Three alcohol proofs were evaluated: 200, 190, and 160. Alcohol was added at the following concentrations: 10, 25, and 50% except in the case of the cetane-improved alcohol. In the latter case a commercial ignition improver for diesel fuel, DII-3, was added to neat alcohol in the proportions of 10, 15, and 20%. Generally, the emissions of CO, total hydrocarbons, and oxides of nitrogen reflected the trends observed in the thermal efficiencies. At light loads, CO and HC emissions were higher than baseline, decreasing to near baseline levels at heavy loads accompanied with higher NOx.
Technical Paper

Emissions from Trucks by Chassis Version of 1983 Transient Procedure

1980-10-01
801371
Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

1978-02-01
780083
Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Technical Paper

Diagnostics of Diesel Engines Using Exhaust Smoke and Temperature

1976-02-01
760833
An experimental sensor array that measures dynamic exhaust temperature and dynamic smoke for the purpose of diagnosing diesel engine fuel injection equipment was designed, built, and tested. The sensor array is portable and easily installed on truck tailpipes, and was tested using two 6V-53 Detroit Diesel engines. The dynamic temperature sensor is a very high response instrument capable of measuring changes in gas temperature in excess of 104°F/second. The dynamic smokemeter is an optical device designed to measure very low levels of light opacity in the smoke plume, with a response compatible with the engine firing frequency. Dynamic exhaust temperature data had more diagnostic significance than dynamic smoke in the detection of maximum power degrading fuel injection faults.
Technical Paper

Exhaust Emissions from Farm, Construction, and Industrial Engines and Their Impact

1975-02-01
750788
The research program on which this paper is based included both laboratory emission measurements and extrapolation of results to the national population of heavy-duty farm, construction, and industrial engines. Emission tests were made on four gasoline engines and eight diesel engines typical of those used in F, C, and I equipment. Gaseous and particulate emissions were measured during engine operation on well-accepted steady-state procedures, and diesel smoke was measured during both steady-state conditions and the Federal smoke test cycle. Emissions measured were hydrocarbons, CO, CO2, NO, NOx, O2, aliphatic aldehydes, light hydrocarbons, particulate, and smoke. Emission of sulfur oxides (SOx) was estimated on the basis of fuel consumed, and both evaporative and blowby hydrocarbons were also estimated where applicable (gasoline engines only). Data on emissions obtained from this study were compared with those available in the literature, where possible.
Technical Paper

Emissions Control of Gasoline Engines for Heavy-Duty Vehicles

1975-02-01
750903
This paper summarizes an investigation of reductions in exhaust emission levels attainable using various techniques appropriate to gasoline engines used in vehicles over 14,000 lbs GVW. Of the eight gasoline engines investigated, two were evaluated parametrically resulting in an oxidation and reduction catalyst “best combination” configuration. Four of the engines were evaluated in an EGR plus oxidation catalyst configuration, and two involved only baseline tests. Test procedures used in evaluating the six “best combination” configurations include: three engine emission test procedures using an engine dynamometer, a determination of vehicle driveability, and two vehicle emission test procedures using a chassis dynamometer. Dramatic reductions in emissions were attained with the catalyst “best combination” configurations. Engine durability, however, was not investigated.
Technical Paper

Exhaust Emissions from Heavy-Duty Trucks Tested on a Road Course and by Dynamometer

1975-02-01
750901
This is a summary compilation and analysis of exhaust-emission results and operating parameters from forty-five heavy-duty gasoline and diesel-powered vehicles tested over a 7.24-mile road course known as the San Antonio Road Route (SARR); and, for correlative purposes, on a chassis dynamometer.(2) Exhaust samples were collected and analyzed using the Constant Volume Sampler (CVS) technique similar to that used in emission testing of light-duty vehicles. On the road course, all equipment and instrumentation were located on the vehicle while electrical power was supplied by a trailer-mounted generator. In addition to exhaust emissions, operating parameters such as vehicle speed, engine speed, manifold vacuum, and transmission gear were simultaneously measured and recorded on magnetic tape. The forty-five vehicles tested represent various model years, GVW ratings, and engine types and sizes.
Technical Paper

Motorcycle Emissions, Their Impact, and Possible Control Techniques

1974-02-01
740627
Seven motorcycles, ranging in size from 100 to 1200 cm3, were tested for emissions characterization purposes. They were operated on the federal seven-mode test procedure (for 1971 and older light-duty vehicles), the federal LA-4 test procedure (for 1972 and later LDVs), and under a variety of steady-state conditions. Four of the machines tested had 4-stroke engines, and the other three had 2-stroke engines. Emissions which were measured included hydrocarbons, CO, CO2, NO, NOx, O2, aldehydes, light hydrocarbons, particulates, and smoke. Emissions of SOx were estimated on the basis of fuel consumed, and evaporative hydrocarbon losses were also estimated. Crankcase “blowby” emissions from one 4-stroke machine were measured. The impact of motorcycles on national pollutant totals was estimated, based on the test results and information from a variety of sources on national population and usage of motorcycles.
Technical Paper

Exhaust Emissions from 2-Stroke Outboard Motors and Their Impact

1974-02-01
740737
To characterize exhaust emissions from water-cooled 2-stroke outboard motors (the predominant type), four new motors were tested on dynamometer stands. The engines ranged from 4-65 hp in size, and operating conditions were chosen along lines of simulated boat loading. All the measurements were taken at steady-state conditions. Emission concentrations were measured in raw exhaust gas and after the gases had been bubbled through water in a specially constructed tank. Constituents measured included hydrocarbons, CO, CO2, NO, NOx, O2, light hydrocarbons, and aldehydes. Emissions of sulfur oxides (SOx) were estimated on the basis of fuel consumed, and all the exhaust emissions data were used with available information on population and usage of motors to estimate exhaust emission factors and national exhaust emissions impact.
Technical Paper

Snowmobile Engine Emissions and Their Impact

1974-02-01
740735
This paper describes a research program on exhaust emissions from snowmobile engines, including both emissions characterization and estimation of national emissions impact. Tests were conducted on three popular 2-stroke twins and on one rotary (Wankel) engine. Emissions that were measured included total hydrocarbons, (paraffinic) hydrocarbons by NDIR, CO, CO2, NO (by two methods), NOx, O2, aldehydes, light hydrocarbons, particulate, and smoke. Emissions of SOx were estimated on the basis of fuel consumed, and evaporative hydrocarbons were projected to be negligible for actual snowmobile operation. During emissions tests, intake air temperature was controlled to approximately -7°C (20°F), and room air at approximately 24°C (75°F) was used for engine cooling. Based on test results and the best snowmobile population and usage data available, impact of snowmobile emissions on a national scale was computed to be minimal.
Technical Paper

Small Engine Emissions and Their Impact

1973-02-01
730859
In an attempt to characterize emissions from small air-cooled utility engines, five gasoline-fueled models were operated over a variety of speeds and loads, and important exhaust constituents were measured. These emissions included hydrocarbons, CO, CO2, NO, O2, aldehydes, light hydrocarbons, particulates, and smoke. Emissions of SOx were estimated on the basis of the fuel consumed; evaporative losses of hydrocarbons were also estimated. The impact of small engine emissions was calculated on the basis of the test results and information on national engine populations and usage. From these data, it appears that the 50 million or more small engines currently being used account for only a small part of pollutants from all sources.
Technical Paper

Diesel Exhaust Hydrocarbon Measurement - A Flame-Ionization Method

1970-02-01
700106
The design and development of an instrument for the measurement of total hydrocarbons in diesel exhaust are described, and its ability to measure steady-state and transient hydrocarbon emissions is indicated. The two-section system comprises a sampling train and flame-ionization detector and a chromatograph electrometer, recorder and backpressure regulator. A mixture of 40% H2 and 60% He was found to be the best fuel for low O2 response with the system. The method has been used for more than a year in evaluating hydrocarbon emissions from a wide variety of diesel engines under a number of typical operating conditions. The greatest advantage of the high-temperature system is its potential for expressing the total hydrocarbon content in diesel exhaust.
Technical Paper

Passenger Car Hydrocarbon Emissions

1962-01-01
620005
This paper presents the results of an investigation of the normal sources of hydrocarbon emissions of passenger cars. The sources were considered to consist of the crankcase ventilation and exhaust systems, the carburetor, and the fuel tank vent. Many studies involving the emissions from several of these sources have been conducted and reported; however, it is believed that this is the first study designed to develop emission data from all the sources of a single group of passenger cars. Although only five vehicles were used, several mechanical conditions and engine and power train configurations were examined. The largest single source of hydrocarbon emissions was found to be the exhaust, followed by the road draft tube. Relatively minor emissions were measured as a result of fuel evaporation from the carburetor and fuel tank during periods of operation and hot soak.
X