Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Developmental Fuels Emissions Evaluation

2005-10-24
2005-01-3704
Emissions characterization of three, small off-road engines of less than 19 kW power rating operating on two developmental fuels and one reference fuel was performed. The two fuels were formulated to remove benzene completely, curtail sulfur, and in one blend, include a substantial proportion of ethyl tert-butyl ether (ETBE). The engines selected included one side-valve four-stroke engine, one overhead valve four-stroke engine and one handheld two-stroke engine. The engines were maintained in stock condition. Exhaust emissions from operation with the two developmental fuels were compared to those from operation with light-duty certification-grade gasoline. California Air Resources Board (CARB) Small Off-Road Engine (SORE) emissions test methods and test cycles were used to test the engines. Duplicate tests were performed on each engine using dilute sampling procedures. Hydrocarbon speciation was performed on one replicate with each fuel.
Technical Paper

The Effect of Water on Soot Formation Chemistry

2005-10-24
2005-01-3850
A combined, experimental and numerical program is presented. This work summarizes an internal research effort conducted at Southwest Research Institute. Meeting new, stringent emissions regulations for diesel engines requires a way to reduce NOx and soot emissions. Most emissions reduction strategies reduce one pollutant while increasing the other. Water injection is one of the few promising emissions reduction techniques with the potential to simultaneously reduce soot and NOx in diesel engines. While it is widely accepted that water reduces NOx via a thermal effect, the mechanisms behind the reduction of soot are not well understood. The water could reduce the soot via physical, thermal, or chemical effects. To aid in developing water injection strategies, this project's goal was to determine how water enters the soot formation chemistry.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

2005-10-24
2005-01-3793
Research has shown that there are many factors that affect the long-term performance of nitrogen oxides (NOx) control systems used in diesel engine applications. However, if the NOx emissions can be accurately monitored, it might be possible to restore performance by making adjustments to the control systems. This paper presents results from a study that tested the durability of 25 NOx sensors exposed to heavy-duty diesel exhaust for 6,000 hours. The study, conducted by the Advanced Petroleum-Based Fuels - Diesel Emission Controls (APBF-DEC) project, tested the sensors at various locations in the exhaust stream.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

Experimental Investigation of the Scavenging Performance of a Two-Stroke Opposed-Piston Diesel Tank Engine

2004-03-08
2004-01-1591
The Tank-Automotive RD&E Center periodically conducts foreign materiel evaluations to assess the current state of the art for ground vehicle technologies. The Propulsion Laboratory is conducting performance evaluations of an opposed-piston two-stroke diesel tank engine produced by the Kharkov Design Bureau in Ukraine. A key factor in the performance of all two-stroke engines is the scavenging process, which determines how well the cylinders are emptied of exhaust and filled with fresh air. The overall air flow rate is not sufficient to determine this, as a significant amount of air may be lost through the exhaust ports during the scavenging process. The inlet tracer gas method was employed to provide the additional data required. With methane as the tracer, it produced reasonable and consistent data over a wide range of engine speeds and loads. The inlet tracer gas method was found to be an effective tool for measuring the scavenging performance of a running two-stroke diesel engine.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Diesel Exhaust Particulate Sampler for On-board PM Measurement

2008-04-14
2008-01-1180
Horiba on-board diesel exhaust particulate sampler (OBS-PM) is a filter based partial flow particulate sampling system used for On-board diesel particulate matter (PM) measurement. It takes sample from either raw or diluted exhaust. It can run at constant dilution ratios or at variable dilution ratios with proportional control on the sample flow. The diluted exhaust moves through a pre-weighed 47 mm particulate filter and PM is collected on the filter. By weighing the loaded sample filter, PM emission from the engine or the vehicle can be determined. The performance of the OBS-PM meets most of requirements for a real-time partial flow sample system (PFSS) recommended by ISO 16183 [2]. The physical size and the power consumption of the instrument are minimized. It is powered with four 12 volts batteries, and can be installed on a vehicle for real-world PM emission evaluation.
Technical Paper

Effect of Diesel and Water Co-injection with Real-Time Control on Diesel Engine Performance and Emissions

2008-04-14
2008-01-1190
A system for injection of diesel fuel and water with real-time control, or real-time water injection (RTWI), was developed and applied to a heavy-duty diesel engine. The RTWI system featured electronic unit pumps that delivered metered volumes of water to electronic unit injectors (EUI) modified to incorporate the water addition passages. The water and diesel mixed in the injector tip such that the initial portion of the injection contained mostly diesel fuel, while the balance of the injection was a water and diesel mixture. With this hardware, real-time cycle-by-cycle control of water mass was used to mitigate soot formation during diesel combustion. Using RTWI alone, NOx emissions were reduced by 42%. Using high-pressure-loop exhaust gas recirculation (EGR) and conventional diesel combustion with RTWI, the NOx was reduced by 82%.
Technical Paper

Emissions Reduction Performance of a Bimetallic Platinum/Cerium Fuel Borne Catalyst with Several Diesel Particulate Filters on Different Sulfur Fuels

2001-03-05
2001-01-0904
Results of engine bench tests on a 1998 heavy-duty diesel engine have confirmed the emissions reduction performance of a U.S. Environmental Protection Agency (EPA) registered platinum/cerium bimetallic fuel borne catalyst (FBC) used with several different catalyzed and uncatalyzed diesel particulate filters (DPF's). Performance was evaluated on both a 450ppm sulfur fuel (No.2 D) and a CARB 50ppm low sulfur diesel (LSD) fuel. Particulate emissions of less than 0.02g/bhp-hr were achieved on several combinations of FBC and uncatalyzed filters on 450ppm sulfur fuel while levels of 0.01g/bhp-hr were achieved for both catalyzed and uncatalyzed filters using the FBC with the low sulfur CARB fuel. Eight-mode steady state testing of one filter and FBC combination with engine timing changes produced a 20% nitrogen oxide (NOx) reduction with particulates (PM) maintained at 0.01g/bhp-hr and no increase in measured fuel consumption.
Technical Paper

The ASTM Test Monitoring Center - Evolving in a Changing Industry

2000-10-16
2000-01-2946
This paper traces the evolution of the ASTM Test Monitoring Center (TMC) from its modest beginnings in 1976 to the present. Formed as an unbiased and non-aligned group within ASTM Subcommittee D02.B, the TMC operates a reference oil based calibration system that serves both the producers and users of automotive lubricants. Governed by the ASTM Test Monitoring Board, the center's primary mission is to calibrate engine dynamometer test stands used to conduct various ASTM test methods for evaluating lubricant performance. The core services of the TMC have remained the same over its nearly 25 year history. The center stores and distributes ASTM reference oils and is responsible for assuring, through the use of analytical testing, the quality and consistency of the oils. The number of reference oils handled by the TMC has steadily increased over time such that today the center inventories some 100 different formulations having a total volume of 65,000 gallons.
Technical Paper

Alternative Fuels: Development of a Biodiesel B20 Purchase Description

2000-12-04
2000-01-3428
Alternative fuels made from materials other than petroleum are available for use in alternative fueled vehicles (AFVs) and some conventional vehicles. Liquid fuels such as biodiesel could be used in U.S. Army or other Military/Federal Government compression ignition (CI) engine powered vehicles. The military combat/tactical fleet is exempt from Federal Government mandates to use alternative fueled vehicles and has adopted JP-8/JP-5 jet fuel as the primary military fuel. The Army non-tactical fleet and other Federal nonexempt CI engine powered vehicles are possible candidates for using biodiesel. Inclusion of biodiesel as an alternative fuel qualifying for alternative fueled vehicle credits for fleets required to meet AFV requirements has allowed for its use at 20 (minimum) percent biodiesel in petroleum diesel fuel. Alternative fuels are being considered for the 21st Century Truck (21T) program. [1]
Technical Paper

Comparison of Four Sampling Methods for Semi-volatile Organic Compounds in Gas Phase Diesel Engine Exhausts

2008-10-06
2008-01-2435
Newly designed Teflon® O-rings along with XAD-2 resin, stainless steel screens, lock rings, and glass cartridges were used to construct a new semi-volatile organic compounds (SVOC's) sampling device. This new sampling device allows direct and repeated sampling, extraction, and cleaning without ever having to be disassembled or reassembled. This new XAD-2 glass cartridge (X2) was compared with three other sampling methods namely Empore® membrane (EM), hexane impinger (HI), and “Cold Trap” (CT) for SVOC sampling efficiency on diesel engine exhaust emissions. The X2 method showed the highest overall SVOC collection efficiency, followed by the EM and HI methods. The X2 method has higher trapping efficiency for the oxygenates, polycyclic aromatic hydrocarbons (PAH's), alkyl cyclohexanes, and the alkyl aromatics than the other three SVOC sampling methods. The HI method has the highest trapping efficiency for the normal alkanes.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

A Novel Approach for Diesel NOX/PM Reduction

2010-04-12
2010-01-0308
The US EPA emission standards for 2010 on-highway and 2014 non-road diesel engines are extremely stringent, both in terms of oxides of nitrogen (NOX) and particulate matter (PM). Diesel engines typically operate lean and use at least 40-50 percent more air than what is needed for stoichiometric combustion of the fuel. As a result, significant excess oxygen (O₂) is present in diesel exhaust gas which prevents the application of the mature three-way catalyst (TWC) technology for NOX control used in gasoline engines. The objective of this work was to investigate whether or not the catalyzed DPF had a TWC-type of effect on NOX emissions and if so, why and to what extent when used on a diesel engine operating at reduced A/F ratio conditions.
Technical Paper

Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine

2010-04-12
2010-01-0365
Particulate Matter (PM) emissions from gasoline direct injection (GDI) engines are becoming a concern and will be limited by future emissions regulations, such as the upcoming Euro 6 legislation. Therefore, PM control from a GDI engine will be required in addition to effective reduction of HC, CO and NOx emissions. Three different integrated aftertreatment systems were developed to simultaneously reduce PM, HC, CO and NOx emissions from a preproduction Ford 3.5L EcoBoost GTDI engine, with PM reduction as the major focus. PM reduction efficiencies were calculated based on the measurements of PM mass and solid particle number. Test results show that tradeoffs exist in the design of aftertreatment systems to significantly reduce PM emissions from a GDI engine.
Technical Paper

Navigation Control in an Urban Autonomous Ground Vehicle

2011-04-12
2011-01-1037
Southwest Research Institute developed an Autonomous Ground Vehicle (AGV) capable of navigating in urban environments. The paper first gives an overview of hardware and software onboard the vehicle. The systems onboard are classified into perception, intelligence, and command and control modules to mimic a human driver. Perception deals with sensing from the world and translating it into situation awareness. This awareness is then fed into intelligence modules. Intelligence modules take inputs from the user to understand the need to navigate from its current location to another destination and, then, generate a path between them on urban, drivable surfaces using its internal urban database. Situational awareness helps intelligence to update the path in real time by avoiding any static/moving obstacles while following traffic rules.
X