Refine Your Search

Topic

Author

Affiliation

Search Results

Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Technical Paper

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-04-16
2012-01-1077
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH₃ storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH₃ storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH₃ slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Technical Paper

Roadmap for Hybridization of Military Tactical Vehicles: How Can We Get There?

2002-11-18
2002-01-3048
The U.S. Army's National Automotive Center has contracted with Illinois Institute of Technology Research Institute (IITRI), Southwest Research Institute (SwRI), and Advanced Propulsion, LLC, to evaluate the effects on fuel consumption and logistics that would result from hybridizing the powertrains of the Army's tactical wheeled vehicle fleet. This paper will outline the approach taken to perform that evaluation and present a synopsis of results achieved to date.
Technical Paper

Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine

1997-02-24
970264
An emissions reduction strategy was developed and demonstrated to significantly reduce cold-start hydrocarbon (HC) and CO emissions from a spark ignition (SI), gasoline-fueled engine. This strategy involved cold-starting the engine with an ultra-fuel rich calibration, while metering near-stoichiometric fractions of air directly into the exhaust ports. Using this approach, exhaust constituents spontaneously ignited at the exhaust ports and burned into the exhaust manifold and exhaust pipe leading to the catalytic converter. The resulting exotherm accelerated catalyst heating and significantly decreased light-off time following a cold-start on the FTP-75 with a Ford Escort equipped with a 1.9L engine. Mass emissions measurements acquired during the first 70 seconds of the FTP-75 revealed total-HC and CO reductions of 68 and 50 percent, respectively, when compared to baseline measurements.
Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

2014-09-30
2014-01-2425
Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Technical Paper

Predicting Sequence VI, VIA, and VIB Engine Tests Using Laboratory Methods

2001-05-07
2001-01-1904
Engine tests are widely used to measure the ability of lubricating oils to reduce fuel consumption through improved mechanical efficiency. Previous publications have correlated laboratory-scale tests with the well-established Sequence VI and VIA engine methods. The present paper uses a matrix of 66 oils to produce an empirical model for the recently developed Sequence VIB engine test. A smaller matrix of oils was available for correlation with Sequence VI and VIA results. The models combine a purposely-designed friction test with conventional measures of kinematic and high-temperature high-shear viscosity. Good correlation was obtained with the Sequence VI, VIA and VIB results, as well as each of the five stages in the Sequence VIB test. The effects of lubricant oxidation in the 96-hour FEI-2 portion of the Sequence VIB test were similar for each of the oils. As a result, good correlation was observed between FEI-1 and FEI-2 results from the VIB test.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Polycyclic Aromatic Hydrocarbons in Diesel Engine Exhaust Both with and without Aftertreatment

2018-09-10
2018-01-1812
Since the conception of the internal combustion engine, smoky and ill-smelling exhaust was prevalent. Over the last century, significant improvements have been made in improving combustion and in treating the exhaust to reduce these effects. One group of compounds typically found in exhaust, polycyclic aromatic hydrocarbons (PAH), usually occurs at very low concentrations in diesel engine exhaust. Some of these compounds are considered carcinogenic, and most are considered hazardous air pollutants (HAP). Many methods have been developed for sampling, handling, and analyzing PAH. For this study, an improved method for dilute exhaust sampling was selected for sampling the PAH in diesel engine exhaust. This sampling method was used during transient engine operation both with and without aftertreatment to show the effect of aftertreatment.
Technical Paper

Piston-Turbine-Compound Engine — A Design and Performance Analysis

1965-02-01
650632
Exhaust heat utilization for internal combustion engines has centered around turbosupercharging in recent years, neglecting the promising field of compounding a piston engine with a gas turbine in which, unlike turbocharging, turbine power is fed back to the engine crankshaft. The piston engine can cope with high gas pressure and temperature, whereas the gas turbine can efficiently utilize the energy at relatively low pressure and temperature and large volume flows. By compounding, this-piston engine will handle the high pressure, high temperature phase of the combustion cycle and extend the expansion ratio of the gases to atmospheric pressure by completing the low pressure, low temperature phase in the gas turbine. The marriage of the two engines will result in an outstanding power package with the highest thermal efficiency possible.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Performance Evaluation of Advanced Emission Control Technologies for Diesel Heavy-Duty Engines

1999-10-25
1999-01-3564
To evaluate the performance of a variety of commercially available exhaust emission control technologies, the Manufacturers of Emission Controls Association (MECA) sponsored a test program at Southwest Research Institute (SwRI). The test engine was a current design heavy-duty diesel engine operated on standard No. 2 diesel (368 ppm) and lower sulfur (54 ppm) diesel fuel. Technologies evaluated included: diesel oxidation catalysts (DOCs), diesel particulate filters (DPFs), selective catalytic reduction (SCR), fuel-borne catalysts (FBCs) in combination with filters and oxidation catalysts, and combinations of the above technologies. The program was structured to demonstrate that a variety of exhaust emission control technologies, including exhaust gas recirculation, could be used to substantially reduce emissions from a modern MY 1998 heavy-duty diesel engine.
Technical Paper

Passenger Car Hydrocarbon Emissions

1962-01-01
620005
This paper presents the results of an investigation of the normal sources of hydrocarbon emissions of passenger cars. The sources were considered to consist of the crankcase ventilation and exhaust systems, the carburetor, and the fuel tank vent. Many studies involving the emissions from several of these sources have been conducted and reported; however, it is believed that this is the first study designed to develop emission data from all the sources of a single group of passenger cars. Although only five vehicles were used, several mechanical conditions and engine and power train configurations were examined. The largest single source of hydrocarbon emissions was found to be the exhaust, followed by the road draft tube. Relatively minor emissions were measured as a result of fuel evaporation from the carburetor and fuel tank during periods of operation and hot soak.
Technical Paper

Particle Size Distribution and Mass Emissions from a Mining Diesel Engine Equipped with a Dry System Technologies Emission Control System

2003-05-19
2003-01-1893
Particle size distribution, number, and mass emissions from the exhaust of a 92 kW 1999 Isuzu 6BG1 nonroad naturally aspirated diesel engine were measured. The engine exhaust was equipped with a Dry System Technologies® (DST) auxiliary emission control device that included an oxidation catalyst, a heat exchanger, and a disposable paper particulate filter. Particle measurement was taken during the ISO 8178 8-mode test for engine out and engine with the DST using a scanning mobility particle sizer (SMPS) in parallel to the standard filter method (SFM), specified in 40 CFR, Part 89. The DST efficiency of removing particles was about 99.9 percent based on particle number, 99.99 percent based on particle mass derived from number and size. However, the efficiency based on mass derived from the SFM was much lower on the order of 90 to 93 percent.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Parasitic Loss Reduction for 21st Century Trucks

2000-12-04
2000-01-3423
To reach its objective of reducing vehicle fuel consumption by 50 percent, the development of the 21st Century Truck (21T) will address all the aspects of truck design contributing to the achievement of that goal. [1] This paper will address one of these aspects, specifically vehicle parasitic loss reduction with special emphasis on drive train losses, concentrating on the potential benefits of replacing mechanical coolant (water) and oil pumps with electrically powered pumps.
Technical Paper

Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing

2015-04-14
2015-01-0778
The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
Technical Paper

Options for the Introduction of Methanol as a Transportation Fuel

1987-11-01
872166
It is generally recognized chat methanol is the best candidate for long-term replacement of petroleum-based fuels at soma time in the future. The transition from an established fuel to a new fuel, and vehicles that can use the new fuel, is difficult, however. This paper discusses two independent investigations of possible transition uses of methanol, which, when combined, may provide an option for introduction of methanol that takes advantage of the existing industrial base, and provides economic incentives to the consumer. The concept combines the intermediate blends of methanol and gasoline (50%-70% methanol) with the Flexible Fuel Vehicle. In addition to a possible maximum cost effectiveness, these fuels ease vehicle range restrictions due to refueling logistics, and mitigate cold starting problems, while at the same time providing most of the performance of the higher concentration blends.
Technical Paper

On-Board Hydrogen Generation for Rapid Catalyst Light-Off

2000-06-19
2000-01-1841
This paper describes an on-vehicle demonstration of a hydrogen-heated catalyst (HHC) system for reducing the level of cold-start hydrocarbon emissions from a gasoline-fueled light-duty vehicle. The HHC system incorporated an onboard electrolyzer that generates and stores hydrogen (H2) during routine vehicle operation. Stored hydrogen and supplemental air are injected upstream of a platinum-containing automotive catalyst when the engine is started. Rapid heating of the catalytic converter occurs immediately as a result of catalytic oxidation of hydrogen (H2) with oxygen (O2) on the catalyst surface. Federal Test Procedure (FTP) emission results of the hydrogen-heated catalyst-equipped vehicle demonstrated reductions of hydrocarbons (HC) and carbon monoxide (CO) up to 68 and 62 percent, respectively. This study includes a brief analysis of the emissions and fuel economy effects of a 10-minute period of hydrogen generation during the FTP.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
X