Refine Your Search

Topic

Author

Search Results

Technical Paper

Are the Traditional Methods for Determining Depletion of Total Base Number Providing Adequate Engine Protection?

2007-10-29
2007-01-4001
With the increasing use of modern, EGR-equipped, heavy-duty diesel engines and the use of lower sulfur and alternate fuels, such as biodiesel, lubricants are being exposed to a range of different compositions of acids. To complement the traditional detergent bases, todays lubricants have evolved to include a higher proportion of basic materials from amine-derived sources to aid in oxidation and soot control. This paper explores the impact of the different sources of acids, some of the issues they create and how they can be addressed, exemplified in a prototype CJ-4 lubricant formulation.
Technical Paper

An Extended 35VQ-25 Vane Pump Test as a Viable Method for Differentiating Anti-Wear Hydraulic Fluid Performance

2002-03-19
2002-01-1403
This paper describes the development of an extended vane pump test procedure utilizing the Eaton® 35VQ-25 vane pump. Evaluation of two commercial Zinc Dithiophosphate containing and two commercial non Zinc (ashless) hydraulic fluids are also described. Results show that extending the test time allows differentiation among fluids which give comparable performance in the standard 50 hour test. System cleanliness, as well as pump weight loss, must be used in the performance assessment.
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
Technical Paper

A Method to Assess Grease Temperature Response in CVJ Applications

2005-05-11
2005-01-2177
The constant velocity joint (CVJ) has seen increased usage driven by the growth of front wheel drive vehicles over the last 30 years. The CVJ provides a smooth, dynamic connection between the output of the axle or gearbox and the driving wheels of the vehicle. The seemingly simple device, however, requires specially designed greases to maximize protection of the internal components from distress and provide optimum performance and service life. One measure of potential distress in the CVJ can be related to temperature rise which is a reflection of the friction and wear properties of the grease employed. A test rig was designed and a method created to evaluate the temperature response of different greases used in a CVJ. The test rig was designed to allow a wide range of speeds, torques and shaft angles to be used. The rig uses a unique temperature pickup system to allow for dynamic measurement of the grease temperature in the boot.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

A Comparison of the Effects of Additives on Spark Ignited Combustion in a Laminar Flow System and in an Engine Under Cold-Start Conditions

2002-10-21
2002-01-2834
Experiments have been conducted in a laminar flow system and in a research engine to investigate the effect of additives on the combustion of gasoline-like fuels. The purpose of the laminar system is to enable rapid screening of additives to determine which, if any, have an enhancing effect on the early stages of combustion, especially under conditions of poor fuel vaporization which exist during cold-start in a spark ignited engine and which make flame propagation difficult to start and sustain. The base fuel used in the laminar and engine systems was a 9 component mixture formulated to simulate those components of gasoline expected to be present in the vapor phase in the intake system of an engine under cold-start conditions. In the laminar system, the pre-mixed, pre-vaporized fuel-air mixture is ignited and a time history of the combustion generated, hydroxyl radical chemiluminescence is recorded.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of Gasoline Direct Injection Part I - Fuel System Deposits and Vehicle Performance

1999-05-03
1999-01-1498
Four 1998 Mitsubishi Carismas, two equipped with direct injection and two with port fuel injection engines, were tested in 20,100 km intervals to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant on vehicle deposits and emissions, acceleration and driveability performance. The program showed that engine fuel system deposits, including specifically those on intake valves, combustion chambers and injectors are formed in higher amounts in the GDI engine than the PFI engine. The fuel additive used reduced injector deposits and combustion chamber deposits in the GDI, but had no significant effect on intake valve deposits, which are affected by crankcase oil formulation. In GDI vehicles, deposited engines were found to have increased hydrocarbon and carbon monoxide emissions and poorer fuel economy and acceleration, but lower particulate emissions.
X