Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Replacing Press Hardenable Steel with 980 MPa Generation 3 Steel for Automotive Pillars

Press hardenable ultra high strength steel (UHSS) is commonly used for automotive components to meet crash requirements with minimal mass addition to the vehicle. Press hardenable steel (PHS) is capable of forming complex geometries with deep sections since the forming takes place at elevated temperatures up to 900 degrees Celsius (in the Austenitic phase). This forming process is known as hot-stamping. The most commonly used PHS grade is often referred to as PHS1500. After hot-stamping, it is typically required to have a yield strength greater than 950 MPa and a tensile strength greater than 1300 MPa. Most automotive design and material engineers are familiar with PHS, the hot-stamping process, and their capabilities. What is less known is the capability of 3rd Generation advanced high strength steels (AHSS) which are cold stamped, also capable of forming complex geometry, and are now in the process of, or have recently completed, qualification at most automotive manufacturers.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.