Refine Your Search


Search Results

Technical Paper

Unthrottled Engine Operation using Variable Valve Actuation: The Impact on the Flow Field, Mixing and Combustion

The effect on the intake flow field, air fuel mixing processes, thermodynamic performance and emissions output has been investigated for a range of valve operating profiles. A standard speed load point of 2000 rpm and 2.7 bar IMEP720° has been reached by throttling the intake whilst running standard cam profiles, by early closing of both inlet valves (EIVC) and by early closing of each inlet individually to generate bulk swirl motions within the cylinder. Data has been recorded at stoichiometric air fuel ratios for both direct injection and port fuelled operation. The valve profiles have been applied to two single cylinder homogeneous gasoline direct injection (GDI) spark ignition engines, developed to investigate the potential of controlling engine load by limiting the inducted air mass using fully variable valve timing (FVVT) to reduce pumping losses at part load.
Technical Paper

Effect of Impinging Airflow on the Near Nozzle Characteristics of a Gasoline Spray from a Pressure-Swirl Atomiser

The effects of impinging airflow on the near nozzle characteristics of an inwardly opening, high pressure-swirl atomiser are investigated in an optically-accessed, steady-state flow rig designed to emulate the intake flow of a typical, side-injected, 4-valve gasoline direct-injection combustion system. The results indicate that the impinging airflow has a relatively minor effect on the initial break-up of the fuel spray. However, the secondary break-up of the spray, i.e. the break-up of liquid ligaments, the spatial distribution of droplets within the spray and the location of the spray within the cylinder are significantly affected by the impinging air.
Technical Paper

The HOTFIRE Homogeneous GDI and Fully Variable Valve Train Project - An Initial Report

There is a great deal of interest in new technologies to assist in reducing the CO2 output of passenger vehicles, as part of the drive to meet the limits agreed by the EU and the European Automobile Manufacturer's Association ACEA, itself a result of the Kyoto Protocol. For the internal combustion engine, the most promising of these include gasoline direct injection, downsizing and fully variable valve trains. While new types of spray-guided gasoline direct injection (GDI) combustion systems are finally set to yield the level of fuel consumption improvement which was originally promised for the so-called ‘first generation’ wall- and air-guided types of GDI, injectors for spray-guided combustion systems are not yet in production to help justify the added complication and cost of the NOx trap necessary with a stratified combustion concept.
Technical Paper

Experimental Investigation into the Liquid Sheet Break-Up of High-Pressure DISI Swirl Atomizers

This paper presents the results of an experimental study into the liquid sheet break-up mechanisms of high-pressure swirl atomizers of the type commonly used in direct-injection spark-ignition (DISI) engines. Sheet disintegration was investigated at two fuel pressures: 5 and 10 MPa, and three ambient back pressures: 50, 100 (atmospheric) and 200 kPa for a pre-production DISI injector. Microscopic images of the near-nozzle spray region were obtained with a high-speed rotating drum camera and copper vapour laser. For the range of conditions considered, the results show the initial break-up to occur in ‘perforated-sheet’ mode. A novel ‘void fraction’ analysis technique was applied to multiple images from the steady-state period of a single injection event in order to characterise and quantify details of the sheet break-up process. The sheet break-up lengths obtained by the authors were compared with the break-up lengths predicted by three commonly employed models from the literature.
Technical Paper

Development and Evaluation of a Novel Optical Interface for Spark Ignition Engine Research

A key objective of this research was to develop an interface device to enable visualization of in-cylinder events within a production SI engine operating at normal speeds and loads, without the need for engine modifications. The device was designed to utilize the existing spark plug hole and to be capable of providing in-cylinder illumination, image transmission and a source of ignition. This technical paper presents the results of the initial evaluation of the device. The evaluation of the durability of the device, in terms of its ability to operate as a spark plug and its permissible operating range is presented. In addition, images of events in the cylinder captured using the device are provided.
Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

An Experimental Study of the Spray Characteristics of Pressure-Swirl Atomizers for DISI Combustion Systems

This paper presents results from a comprehensive experimental study of high-pressure pressure-swirl gasoline injectors tested under a range of simulated operating conditions. This study encompassed photographic analysis of single spray sequences and simultaneous measurement of axial velocity, radial velocity and diameter at point locations using the phase-doppler technique. The combination of these measurement techniques permitted an insight into the fluid dynamics of the injected spray and its development with time. Five primary stages in the spray-history were identified and numerated with experimental data.
Technical Paper

Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques

Two-dimensional Mie-scattering and laser-induced fluorescence techniques were applied to investigate the effects of fuel composition on mixture formation within a firing direct-injection spark-ignition (DISI) engine. A comparison was made between the spray characteristics and in-cylinder fuel distributions resulting from the use of a typical multi-component gasoline (European specification premium-grade unleaded), a single-component research fuel (iso-octane), and a three-component research fuel (iso-pentane, iso-octane and n-nonane). Studies were performed at three different injection timings under cold and part-warm conditions. The results indicate that fuel composition affects both the initial spray formation and the subsequent mixture formation process. Furthermore, the sensitivity of the mixing process to the effects of fuel volatility was shown to depend on injection timing.
Technical Paper

Variation of Both Symmetric and Asymmetric Valve Events on a 4-Valve SI Engine and the Effects on Emissions and Fuel Economy

Mechanisms exist to vary valve lift, duration and phasing either simultaneously or individually but it remains a challenge to find the optimum settings. An experimental investigation involving a statistical approach has been applied to a 4-litre, 90° vee-8, 4-valve engine in which intake valve lift, duration and phasing were chosen as variables along with exhaust valve phasing. The intake valves were operated symmetrically for the first phase of testing, but subsequently asymmetric operation was also investigated. The results indicated possible strategies that could be applied to reduce emissions.
Technical Paper

Effects of Injection Timing on the Exhaust Emissions of a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine

A study to investigate the influence of fuel injection timing on exhaust emissions from a single-cylinder direct-injection spark-ignition (DISI) research engine was performed. Experimental results were obtained for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx). Images showing the variation of liquid-phase fuel distribution with changing injection timing were obtained in a firing optically-accessed engine of similar design. A correlation between measured emissions and observed liquid-phase fuel distribution was performed. This correlation was supported by development of phenomenological models that permit explanation of the variation of CO, HC, and NOx emissions with changes in air-fuel mixture preparation.
Technical Paper

Effects of Injection Timing on Liquid-Phase Fuel Distributions in a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine

An experimental study was carried out to investigate the effects of fuel injection timing on the spatial and temporal development of injected fuel sprays within a firing direct-injection spark-ignition (DISI) engine. It was found that the structure of the injected fuel sprays varied significantly with the timing of the injection event. During the induction stroke and the early part of the compression stroke, the development of the injected fuel sprays was shown to be controlled by the state of the intake and intake-generated gas flows at the start of injection (SOI).The relative influence of these two flow regimes on the injected fuel sprays during this period was also observed to change with injection timing, directly affecting tip penetration, spray/wall impingement and air-fuel mixing. Later in the compression stroke, the results show the development of the injected fuel sprays to be dominated by the increased cylinder pressure at SOI.
Technical Paper

Charge Stratification in a 4-Valve SI Engine Through Injection Into One Intake Port with Induced Axial Swirl Within the Cylinder

An arrangement of port - injected, stratified-charge, 4 - valve SI engine is proposed, in which fuel is injected in a thin column from an injector which is angled so that the fuel is deflected by one of the inlet valves onto the combustion chamber surface, at a position close to the central spark plug. The injection takes place towards the end of the induction stroke, and the injector is mounted to the side of one of the intake ports. The second intake port is deactivated at part load to establish an axial swirling motion to stabilise the fuel evaporating from the warm combustion chamber surface. Testing has been performed on a single - cylinder research engine to assess the extent of the stratification by measuring pre - flame hydrocarbon concentrations at various positions around the combustion chamber.
Technical Paper

Port Throttling and Port De-activation Applied to a 4-Valve SI Engine

This paper describes how the use of a computer model, followed by rig and engine testing, were employed to investigate the application of port throttles to a 4-valve SI engine. The results suggested that the throttling should be split between port and plenum throttles as this gave a faster bum rate than port throttling alone. It was argued that port throttling is most applicable to controlling the level of charge dilution on high-performance engines with large valve overlap periods. Port de-activation was also investigated, first separately, and then in combination with port throttles. Alone it increased the tolerance of the engine to EGR very significantly, and in combination it had the ability both to increase the EGR tolerance and to allow the use of a high-overlap camshaft.